472 research outputs found
Optimal trajectory generation in ocean flows
In this paper it is shown that Lagrangian Coherent
Structures (LCS) are useful in determining near optimal
trajectories for autonomous underwater gliders in a dynamic
ocean environment. This opens the opportunity for optimal
path planning of autonomous underwater vehicles by studying
the global flow geometry via dynamical systems methods. Optimal
glider paths were computed for a 2-dimensional kinematic
model of an end-point glider problem. Numerical solutions to
the optimal control problem were obtained using Nonlinear
Trajectory Generation (NTG) software. The resulting solution
is compared to corresponding results on LCS obtained using
the Direct Lyapunov Exponent method. The velocity data
used for these computations was obtained from measurements
taken in August, 2000, by HF-Radar stations located around
Monterey Bay, CA
Lagrangian coherent structures in n-dimensional systems
Numerical simulations and experimental observations reveal that unsteady fluid systems can be divided into regions of qualitatively different dynamics. The key to understanding transport and stirring is to identify the dynamic boundaries between these almost-invariant regions. Recently, ridges in finite-time Lyapunov exponent fields have been used to define such hyperbolic, almost material, Lagrangian coherent structures in two-dimensional systems. The objective of this paper is to develop and apply a similar theory in higher dimensional spaces. While the separatrix nature of these structures is their most important property, a necessary condition is their almost material nature. This property is addressed in this paper. These results are applied to a model of Rayleigh-Bénard convection based on a three-dimensional extension of the model of Solomon and Gollub
Lagrangian analysis of fluid transport in empirical vortex ring flows
In this paper we apply dynamical systems analyses and computational tools to fluid transport in empirically measured vortex ring flows. Measurements of quasisteadily propagating vortex rings generated by a mechanical piston-cylinder apparatus reveal lobe dynamics during entrainment and detrainment that are consistent with previous theoretical and numerical studies. In addition, the vortex ring wake of a free-swimming Aurelia aurita jellyfish is measured and analyzed in the framework of dynamical systems to elucidate similar lobe dynamics in a naturally occurring biological flow. For the mechanically generated rings, a comparison of the net entrainment rate based on the present methods with a previous Eulerian analysis shows good correspondence. However, the current Lagrangian framework is more effective than previous analyses in capturing the transport geometry, especially when the flow becomes more unsteady, as in the case of the free-swimming jellyfish. Extensions of these results to more complex flow geometries is suggested
Is Progress in the Eyes of the Beholder? Perceptions of Untrained Undergraduate Students vs. Involved Graduate Clinicians and Professionals
For persons with chronic aphasia, improvements in functional communication can continue long after the precipitating event; goals/outcome criteria evolve over time to document improvements. There is a need to explore what behaviors are appropriate quantitative and qualitative markers of change for persons living with aphasia, for SLPS, and for naïve observers. This study compares behaviors documented as evidence of treatment efficacy for one client with chronic aphasia over 15 months with observations of naïve viewers (UG majors in communication disorders). Discrepancies are discussed from the perspective of clinical education and of the broader community’s understanding of successful living with aphasia
Transport and stirring induced by vortex formation
The purpose of this study is to analyse the transport and stirring of fluid that occurs owing to the formation and growth of a laminar vortex ring. Experimental data was collected upstream and downstream of the exit plane of a piston-cylinder apparatus by particle-image velocimetry. This data was used to compute Lagrangian coherent structures to demonstrate how fluid is advected during the transient process of vortex ring formation. Similar computations were performed from computational fluid dynamics (CFD) data, which showed qualitative agreement with the experimental results, although the CFD data provides better resolution in the boundary layer of the cylinder. A parametric study is performed to demonstrate how varying the piston-stroke length-to-diameter ratio affects fluid entrainment during formation. Additionally, we study how regions of fluid are stirred together during vortex formation to help establish a quantitative understanding of the role of vortical flows in mixing. We show that identification of the flow geometry during vortex formation can aid in the determination of efficient stirring. We compare this framework with a traditional stirring metric and show that the framework presented in this paper is better suited for understanding stirring/mixing in transient flow problems. A movie is available with the online version of the paper
- …
