3,803 research outputs found

    Implications of the UHECRs penetration depth measurements

    Full text link
    The simple interpretation of PAO's UHECRs' penetration depth measurements suggests a transition at the energy range 1.13510181.1 - 35 \cdot 10^{18} eV from protons to heavier nuclei. A detailed comparison of this data with air shower simulations reveals strong restrictions on the amount of light nuclei (protons and He) in the observed flux. We find a robust upper bound on the observed proton fraction of the UHECRs flux and we rule out a composition dominated by protons and He. Acceleration and propagation effects lead to an observed composition that is different from the one at the source. Using a simple toy model that take into account these effects, we show that the observations requires an extreme metallicity at the sources with metals to protons mass ratio of 1:1, a ratio that is larger by a factor of a hundred than the solar abundance. This composition imposes an almost impossible constraint on all current astrophysical models for UHECRs accelerators. This may provide a first hint towards new physics that emerges at 100\sim 100 TeV and leads to a larger proton cross section at these energies.Comment: Accepted for publication in Physical Review Letter

    Realizing a variable isotropic depolarizer

    Full text link
    We demonstrate an isotropic depolarizing channel with a controllable degree of depolarization. The depolarizer is composed of four birefringent crystals and half-wave plates. Quantum process tomography results of the depolarization effect on single photons agree well with the theoretical prediction. This depolarizer can be used to test quantum communication protocols with photons.Comment: 4 pages, 4 figure

    The Effect of Decoherence on the Contextual and Nonlocal Properties of a Biphoton

    Full text link
    Quantum contextuality is a nonintuitive property of quantum mechanics, that distinguishes it from any classical theory. A complementary quantum property is quantum nonlocality, which is an essential resource for many quantum information tasks. Here we experimentally study the contextual and nonlocal properties of polarization biphotons. First, we investigate the ability of the biphotons to exhibit contextuality by testing the violation of the KCBS inequality. In order to do so, we used the original protocol suggested in the KCBS paper, and adjusted it to the real scenario, where some of the biphotons are distinguishable. Second, we transmitted the biphotons through different unital channels with controlled amount of noise. We measured the decohered output states, and demonstrated that the ability to exhibit quantum contextuality using the KCBS inequality is more fragile to noise than the ability to exhibit nonlocality.Comment: Main text: 5 pages, 2 figures. Supplementary material: 1 page, 1 figure, 1 tabl

    xUnit: Learning a Spatial Activation Function for Efficient Image Restoration

    Full text link
    In recent years, deep neural networks (DNNs) achieved unprecedented performance in many low-level vision tasks. However, state-of-the-art results are typically achieved by very deep networks, which can reach tens of layers with tens of millions of parameters. To make DNNs implementable on platforms with limited resources, it is necessary to weaken the tradeoff between performance and efficiency. In this paper, we propose a new activation unit, which is particularly suitable for image restoration problems. In contrast to the widespread per-pixel activation units, like ReLUs and sigmoids, our unit implements a learnable nonlinear function with spatial connections. This enables the net to capture much more complex features, thus requiring a significantly smaller number of layers in order to reach the same performance. We illustrate the effectiveness of our units through experiments with state-of-the-art nets for denoising, de-raining, and super resolution, which are already considered to be very small. With our approach, we are able to further reduce these models by nearly 50% without incurring any degradation in performance.Comment: Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Origin of pulsed emission from the young supernova remnant SN 1987A

    Get PDF
    To overcome difficulties in understanding the origin of the submillisecond optical pulses from SN 1987A a model similar to that of Kundt and Krotscheck for pulsed synchrotron emission from the Crab was applied. The interaction of the expected ultrarelativistic e(sup + or -) pulsar wind with the pulsar dipole electromagnetic wave reflected from the walls of a pulsar cavity within the SN 1987A nubula can generate pulsed optical emission with efficiency at most eta(sub max) is approximately equal to 10(exp -3). The maximum luminosity of the source is reproduced and other observational constraints can be satisfied for an average wind energy flow is approximately equal to 10(exp 38) erg/(s steradian) and for electron Lorentz factor gamma is approximately equal to 10(exp 5). This model applied to the Crab yields pulsations of much lower luminosity and frequency
    corecore