47 research outputs found
Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway.
Turmeric, a popular ingredient in the cuisine of many Asian countries, comes from the roots of the Curcuma longa and is known for its use in Chinese and Ayurvedic medicine. Turmeric is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. While curcuminoids have been studied for many years, not much is known about their effects on steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 enzyme activities. When using 10 µg/ml of curcuminoids, both the 17α-hydroxylase as well as 17,20 lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of control when using 1-100 µg/ml of curcuminoids in a dose-dependent manner. Molecular docking studies confirmed that curcumin could dock onto the active sites of CYP17A1, CYP19A1, as well as CYP21A2. In CYP17A1 and CYP19A1, curcumin docked within 2.5 Å of central heme while in CYP21A2 the distance from heme was 3.4 Å, which is still in the same range or lower than distances of bound steroid substrates. These studies suggest that curcuminoids may cause inhibition of steroid metabolism, especially at higher dosages. Also, the recent popularity of turmeric powder as a dilatory supplement needs further evaluation for the effect of curcuminoids on steroid metabolism. The molecular structure of curcuminoids could be modified to generate better lead compounds with inhibitory effects on CYP17A1 and CYP19A1 for potential drugs against prostate cancer and breast cancer
OR19-07 Metformin Inhibits Activation of the Melanocortin Receptor 2 and 3 in Vitro, a Possible Mechanism for Its Anti-Androgenic and Weight Balancing Effects in Vivo
Abstract
Metformin is recommended as one of the first-line drugs for the treatment of type 2 diabetes and the metabolic syndrome. In addition to its insulin sensitizing effects, it has been shown to attenuate androgen excess in women with polycystic ovary syndrome (PCOS) or congenital adrenal hyperplasia (CAH), as well as to ameliorate obesity. The mechanisms of metformin action seem manifold. Preclinical studies suggest that it inhibits the cellular stress response at the level of the mitochondrial OXPHOS system and through AMPK dependent and independent mechanisms. Recent studies have shown that metformin decreases ACTH secretion from pituitary and reduces ACTH-stimulated adrenal secretion. In this study we investigated the effect of metformin through its specific melanocortin receptor 2 (MC2R) on signaling targeting adrenal steroidogenesis. To assess this effect, we used mouse adrenal OS3 cells, which do not express the MC2R. Cells were transfected with the human melanocortin receptor 2 and stimulated by ACTH. Downstream cyclic AMP production was then assessed by a co-transfected cAMP-responsive vector producing luciferase that was measured by a dual luciferase assay. The amount of luciferase produced in this assay corresponds to the amount of receptor activation with varying amount of ACTH. The effect of metformin was then tested in this system. We found a significant inhibition of ACTH induced MC2R activation and signaling with 10 mM metformin. The ACTH concentration response curve (CRC) was half-log shifted indicating antagonism. This effect was dose dependent with an IC50 of 4.2 mM. Metformin did not affect cell viability and basal cAMP level under used conditions. We also tested the effect of metformin on homologous receptors (MCRs). No significant effect was found on MC1R and MC4R activity. However, a 2-log shift in ACTH EC50 was observed with MC3R. In conclusion, metformin seems to act on MC2R and MC3R signaling directly. The role of MC2R for steroidogenesis is well established. MC3R is involved in energy balance and seems to act as a rheostat when the metabolism is challenged. Our study may explain how metformin attenuates the excess response to ACTH and helps in weight loss and improving androgen excess in PCOS and CAH.</jats:p
Altered CYP19A1 and CYP3A4 Activities Due to Mutations A115V, T142A, Q153R and P284L in the Human P450 Oxidoreductase
All cytochromes P450s in the endoplasmic reticulum rely on P450 oxidoreductase (POR) for their catalytic activities. Mutations in POR cause metabolic disorders of steroid hormone biosynthesis and affect certain drug metabolizing P450 activities. We studied mutations A115V, T142A, Q153R identified in the flavin mononucleotide (FMN) binding domain of POR that interacts with partner proteins and P284L located in the hinge region that is required for flexibility and domain movements in POR. Human wild-type (WT) and mutant POR as well as CYP3A4 and CYP19A1 proteins in recombinant form were expressed in bacteria, and purified proteins were reconstituted in liposomes for enzyme kinetic assays. Quality of POR protein was checked by cytochrome c reduction assay as well as flavin content measurements. We found that proteins carrying mutations A115V, T142A located close to the FMN binding site had reduced flavin content compared to WT POR and lost almost all activity to metabolize androstenedione via CYP19A1 and showed reduced CYP3A4 activity. The variant P284L identified from apparently normal subjects also had severe loss of both CYP19A1 and CYP3A4 activities, indicating this to be a potentially disease causing mutation. The mutation Q153R initially identified in a patient with disordered steroidogenesis showed remarkably increased activities of both CYP19A1 and CYP3A4 without any significant change in flavin content, indicating improved protein–protein interactions between POR Q153R and some P450 proteins. These results indicate that effects of mutations on activities of individual cytochromes P450 can be variable and a detailed analysis of each variant with different partner proteins is necessary to accurately determine the genotype-phenotype correlations of POR variants
Self-assembled dipeptide nanotubes constituted by flexible beta-phenylalanine and conformationally constrained alpha,beta-dehydrophenylalanine residues as drug delivery system
Peptide based self assembled nanostructures have attracted growing interest in recent years due to their numerous potential applications particularly in biomedical sciences. Di-peptide Phe-Phe was shown previously to self-assemble into nanotube like structures. In this work, we studied the affect of peptide backbone length and conformational flexibility on the self assembly process by using two dipeptides based on the Phe-Phe backbone (beta Phe-Phe and beta Phe-Delta Phe): one containing a flexible beta Phe amino acid, and the other containing both a flexible bPhe as well as a backbone constraining Alpha Phe (alpha,beta-dehydrophenylalanine) amino acid. Electron microscopy and X-ray diffraction experiments revealed that these new di-peptides can self-assemble into nanotubes having different properties than the native Phe-Phe nanotubes. These nanotubes were stable over a broad range of temperatures and the introduction of non-natural amino acids provided them with stability against the action of nonspecific proteases. Moreover, these dipeptides showed no cytotoxicity towards HeLa and L929 cells, and were able to encapsulate small drug molecules. We further showed that anticancerous drug mitoxantrone was more efficient in killing HeLa and B6F10 cells when entrapped in nanotubes as compared to free mitoxantrone. Therefore, these beta-phenylalanine and alpha, beta-dehydrophenylalanine containing dipeptide nanotubes may be useful in the development of biocompatible and proteolytically stable drug delivery vehicles
Bioactivity of curcumin on the cytochrome P450 enzymes of the steroidogenic pathway
AbstractTurmeric, a popular ingredient in the cuisine of many Asian countries, comes from the roots of theCurcuma longaand is known for its use in Chinese and Ayurvedic medicine. Turmeric is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. While curcuminoids have been studied for many years, not much is known about their effects on steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 enzyme activities. When using 10 µg/ml of curcuminoids, both the 17α-hydroxylase as well as 17,20 lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of control when using 1-100 µg/ml of curcuminoids in a dose-dependent manner. Molecular docking studies confirmed that curcumin could dock into the active sites of CYP17A1, CYP19A1 as well as CYP21A2. In CYP17A1 and CYP19A1, curcumin docked within 2.5 Å of central heme while in CYP21A2 the distance from heme was 3.4 Å, which is still in the same range or lower than distances of bound steroid substrates. These studies suggest that curcuminoids may cause inhibition of steroid metabolism, especially at higher dosages. Also, the recent popularity of turmeric powder as a dilatory supplement needs further evaluation for the effect of curcuminoids on steroid metabolism. Molecular structure of curcuminoids could be modified to generate better lead compounds with inhibitory effects on CYP17A1 and CYP19A1 for potential drugs against prostate cancer and breast cancer.</jats:p
Metformin inhibits the activation of melanocortin receptors 2 and 3 in vitro: A possible mechanism for its anti-androgenic and weight balancing effects in vivo?
Metformin inhibits the activation of melanocortin receptors 2 and 3 in vitro: A possible mechanism for its anti-androgenic and weight balancing effects in vivo?
Metformin is recommended as one of the first-line drugs for the treatment of type 2 diabetes and the metabolic syndrome. In addition to its insulin sensitizing effects, it has been shown to attenuate androgen excess in women with polycystic ovary syndrome (PCOS) or congenital adrenal hyperplasia (CAH), as well as to ameliorate obesity. The mechanisms of metformin action seem manifold. Preclinical studies suggest that it inhibits the cellular stress response at the level of the mitochondrial OXPHOS system and through AMPK dependent and independent mechanisms. Recent studies have shown that metformin decreases ACTH secretion from pituitary and reduces ACTH-stimulated adrenal secretion. In this study we investigated its specific effect through the melanocortin receptor 2 (MC2R) on signaling targeting adrenal steroidogenesis. To assess this effect, we used mouse adrenal OS3 cells, which do not express the MC2R. Cells were transfected with the MC2R and stimulated by ACTH. Downstream cyclic AMP production was then assessed by a co-transfected cAMP-responsive vector producing luciferase that was measured by a dual luciferase assay. The amount of luciferase produced in this assay corresponds to the amount of receptor activation with varying amount of ACTH. The effect of metformin was then tested in this system. We found a significant inhibition of ACTH induced MC2R activation and signaling with 10 mM metformin. The ACTH concentration response curve (CRC) was half-log shifted and a ∼30 % reduction in maximum receptor response (Rmax) to ACTH in presence of metformin was observed. This effect was dose dependent with an IC50 of 4.2 mM. qRT-PCR analyses showed that metformin decreased ACTH induced MC2R expression. Metformin did not affect cell viability and basal cAMP levels. We also tested the effect of metformin on homologous melanocortin receptors (MCRs). No significant effect was found on MC1R and MC4R activity. However, a log shift of EC50 of ACTH stimulation on MC3R was observed with metformin treatment. Metformin also inhibited melanocortin stimulating hormone (αMSH) induced MC3R activity. In conclusion, we show that metformin acts on MC2R and MC3R signaling directly. The role of MC2R for steroidogenesis is well established. MC3R is involved in energy balance and seems to act as a rheostat when the metabolism is challenged. Our study may explain how metformin helps in weight loss and attenuates the excess response to ACTH in androgen excess disorders such as PCOS and CAH
Inhibition of placental CYP19A1 activity remains as a valid hypothesis for 46,XX virilization in P450 oxidoreductase deficiency
Cytochrome P450 oxidoreductase deficiency (PORD), caused by mutations in P450 oxidoreductase (POR), is a disorder of steroid metabolism often characterized by disordered sexual development (1⇓–3). POR is required for enzymatic activities of multiple cytochrome P450 enzymes (4). In PNAS, Reisch et al. (5) propose “alternative pathway androgen biosynthesis” as the cause of 46,XX virilization in PORD. We are pleased to see the expansion of the role of alternative pathway in sexual development previously demonstrated by us in 46,XY individuals (6), but have some concerns regarding the assumption that virilization of 46,XX individuals in PORD is mainly via an alternative pathway. The choice of steroid analysis by Reisch et al. (5) from only 46,XY individuals to propose a hypothesis for 46,XX virilization is baffling. Another recent study found low to undetectable levels of 17-hydroxy-dihydroprogesterone, 17-hydroxy-allopregnanolone, and androsterone, the steroids in alternative pathway produced via CYP17A1, in the 46,XX fetal adrenals and attributed it to a lack of SRD5A1 expression in fetal adrenal (7). We have previously reported that mutations in the key enzymes of the alternative pathway cause 46,XY undervirilization (6). By contrast, mutations in aromatase (CYP19A1) cause genital virilization in 46,XX individuals (8), which prompted us to reexamine the results of Reisch et al. (5)
Variability in human drug metabolizing cytochrome P450 CYP2C9, CYP2C19 and CYP3A5 activities caused by genetic variations in cytochrome P450 oxidoreductase.
A broad spectrum of human diseases are caused by mutations in the NADPH cytochrome P450 oxidoreductase (POR). Cytochrome P450 proteins perform several reactions, including the metabolism of steroids, drugs, and other xenobiotics. In 2004 the first human patients with defects in POR were reported, and over 250 variations in POR are known. Information about the effects of POR variants on drug metabolizing enzymes is limited and has not received much attention. By analyzing the POR sequences from genomics databases, we identified potentially disease-causing variations and characterized these by in vitro functional studies using recombinant proteins. Proteins were expressed in bacteria and purified for activity assays. Activities of cytochrome P450 enzymes were tested in vitro using liposomes prepared with lipids into which P450 and P450 reductase proteins were embedded. Here we are reporting the effect of POR variants on drug metabolizing enzymes CYP2C9, CYP2C19, and CYP3A5 which are responsible for the metabolism of many drugs. POR Variants A115V, T142A, A281T, P284L, A287P, and Y607C inhibited activities of all P450 proteins tested. Interestingly, the POR variant Q153R showed a reduction of 20-50% activities with CYP2C9 and CYP2C19 but had a 400% increased activity with CYP3A5. The A287P is most common POR mutation found in patients of European origin, and significantly inhibited drug metabolism activities which has important consequences for monitoring and treatment of patients. In vitro, functional assays using recombinant proteins provide a useful model for establishing the metabolic effect of genetic mutations. Our results indicate that detailed knowledge about POR variants is necessary for correct diagnosis and treatment options for persons with POR deficiency and the role of changes in drug metabolism and toxicology due to variations in POR needs to be addressed
