470 research outputs found
A-infinity structure on simplicial complexes
A discrete (finite-difference) analogue of differential forms is considered,
defined on simplicial complexes, including triangulations of continuous
manifolds. Various operations are explicitly defined on these forms, including
exterior derivative and exterior product. The latter one is non-associative.
Instead, as anticipated, it is a part of non-trivial A-infinity structure,
involving a chain of poly-linear operations, constrained by nilpotency
relation: (d + \wedge + m + ...)^n = 0 with n=2.Comment: final version. 29 page
Resolvents and Seiberg-Witten representation for Gaussian beta-ensemble
The exact free energy of matrix model always obeys the Seiberg-Witten (SW)
equations on a complex curve defined by singularities of the quasiclassical
resolvent. The role of SW differential is played by the exact one-point
resolvent. We show that these properties are preserved in generalization of
matrix models to beta-ensembles. However, since the integrability and
Harer-Zagier topological recursion are still unavailable for beta-ensembles, we
need to rely upon the ordinary AMM/EO recursion to evaluate the first terms of
the genus expansion. Consideration in this paper is restricted to the Gaussian
model.Comment: 15 page
High pressures, low temperatures, and magnetic field effects on AgFeAsSe3 and AgFeSbSe3 properties
A procedure for synthesizing AgFeAsSe3 and AgFeSbSe3 is presented, and their electric and magnetic properties are investigated over a wide range of temperatures, pressures, and magnetic field variation. At 100-400K, the samples are characterized by semiconductor properties. Under pressures of ∼25 and ∼24 GPa, the electric properties of AgFeAsSe 3 and AgFeSbSe3 change greatly. © 2013 Allerton Press, Inc
Challenges of beta-deformation
A brief review of problems, arising in the study of the beta-deformation,
also known as "refinement", which appears as a central difficult element in a
number of related modern subjects: beta \neq 1 is responsible for deviation
from free fermions in 2d conformal theories, from symmetric omega-backgrounds
with epsilon_2 = - epsilon_1 in instanton sums in 4d SYM theories, from
eigenvalue matrix models to beta-ensembles, from HOMFLY to super-polynomials in
Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras
etc. The main attention is paid to the context of AGT relation and its possible
generalizations.Comment: 20 page
Exact 2-point function in Hermitian matrix model
J. Harer and D. Zagier have found a strikingly simple generating function for
exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model.
In this paper we generalize their result to 2-point correlators, using Toda
integrability of the model. Remarkably, this exact 2-point correlation function
turns out to be an elementary function - arctangent. Relation to the standard
2-point resolvents is pointed out. Some attempts of generalization to 3-point
and higher functions are described.Comment: 31 pages, 1 figur
On "Dotsenko-Fateev" representation of the toric conformal blocks
We demonstrate that the recent ansatz of arXiv:1009.5553, inspired by the
original remark due to R.Dijkgraaf and C.Vafa, reproduces the toric conformal
blocks in the same sense that the spherical blocks are given by the integral
representation of arXiv:1001.0563 with a peculiar choice of open integration
contours for screening insertions. In other words, we provide some evidence
that the toric conformal blocks are reproduced by appropriate beta-ensembles
not only in the large-N limit, but also at finite N. The check is explicitly
performed at the first two levels for the 1-point toric functions.
Generalizations to higher genera are briefly discussed.Comment: 10 page
Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions
We give a concise summary of the impressive recent development unifying a
number of different fundamental subjects. The quiver Nekrasov functions
(generalized hypergeometric series) form a full basis for all conformal blocks
of the Virasoro algebra and are sufficient to provide the same for some
(special) conformal blocks of W-algebras. They can be described in terms of
Seiberg-Witten theory, with the SW differential given by the 1-point resolvent
in the DV phase of the quiver (discrete or conformal) matrix model
(\beta-ensemble), dS = ydz + O(\epsilon^2) = \sum_p \epsilon^{2p}
\rho_\beta^{(p|1)}(z), where \epsilon and \beta are related to the LNS
parameters \epsilon_1 and \epsilon_2. This provides explicit formulas for
conformal blocks in terms of analytically continued contour integrals and
resolves the old puzzle of the free-field description of generic conformal
blocks through the Dotsenko-Fateev integrals. Most important, this completes
the GKMMM description of SW theory in terms of integrability theory with the
help of exact BS integrals, and provides an extended manifestation of the basic
principle which states that the effective actions are the tau-functions of
integrable hierarchies.Comment: 14 page
- …
