437 research outputs found
Seniority conservation and seniority violation in the g_{9/2} shell
The g_{9/2} shell of identical particles is the first one for which one can
have seniority-mixing effects. We consider three interactions: a delta
interaction that conserves seniority, a quadrupole-quadrupole (QQ) interaction
that does not, and a third one consisting of two-body matrix elements taken
from experiment (98Cd) that also leads to some seniority mixing. We deal with
proton holes relative to a Z=50,N=50 core. One surprising result is that, for a
four-particle system with total angular momentum I=4, there is one state with
seniority v=4 that is an eigenstate of any two-body interaction--seniority
conserving or not. The other two states are mixtures of v=2 and v=4 for the
seniority-mixing interactions. The same thing holds true for I=6. Another point
of interest is that the splittings E(I_{max})-E(I_{min}) are the same for three
and five particles with a seniority conserving interaction (a well known
result), but are equal and opposite for a QQ interaction. We also fit the
spectra with a combination of the delta and QQ interactions. The Z=40,N=40 core
plus g_{9/2} neutrons (Zr isotopes) is also considered, although it is
recognized that the core is deformed.Comment: 19 pages, 9 figures; RevTeX4. We have corrected the SDI values in
Table1 and Fig.1; in Sect.VII we have included an explanation of Fig.3
through triaxiality; we have added comments of Figs.10-12 in Sect.IX; we have
removed Figs.7-
-pairing interaction, number of states, and nine- sum rules of four identical particles
In this paper we study -pairing Hamiltonian and find that the sum of
eigenvalues of spin states equals sum of norm matrix elements within the
pair basis for four identical particles such as four fermions in a single-
shell or four bosons with spin . We relate number of states to sum rules of
nine- coefficients. We obtained sum rules for nine- coefficients
summing
over (1) even and , (2) even and odd , (3) odd and odd ,
and (4) both even and odd , where is a half integer and is an
integer.Comment: 6 pages, no figure, updated version, to be published. Physical Review
C, in pres
Composite Fermions and quantum Hall systems: Role of the Coulomb pseudopotential
The mean field composite Fermion (CF) picture successfully predicts angular
momenta of multiplets forming the lowest energy band in fractional quantum Hall
(FQH) systems. This success cannot be attributed to a cancellation between
Coulomb and Chern-Simons interactions beyond the mean field, because these
interactions have totally different energy scales. Rather, it results from the
behavior of the Coulomb pseudopotential V(L) (pair energy as a function of pair
angular momentum) in the lowest Landau level (LL). The class of short range
repulsive pseudopotentials is defined that lead to short range Laughlin like
correlations in many body systems and to which the CF model can be applied.
These Laughlin correlations are described quantitatively using the formalism of
fractional parentage. The discussion is illustrated with an analysis of the
energy spectra obtained in numerical diagonalization of up to eleven electrons
in the lowest and excited LL's. The qualitative difference in the behavior of
V(L) is shown to sometimes invalidate the mean field CF picture when applied to
higher LL's. For example, the nu=7/3 state is not a Laughlin nu=1/3 state in
the first excited LL. The analysis of the involved pseudopotentials also
explains the success or failure of the CF picture when applied to other systems
of charged Fermions with Coulomb repulsion, such as the Laughlin quasiparticles
in the FQH hierarchy or charged excitons in an electron-hole plasma.Comment: 27 pages, 23 figures, revised version (significant changes in text
and figures), submitted to Phil. Mag.
Companion problems in quasispin and isospin
We note that the same mathematical results apply to problems involving
quasispin and isospin, but the problems per se are different. In the quasispin
case, one deals with a system of identical fermions (e.g. neutrons) and address
the problem of how many seniority conserving interactions there are. In the
isospin case, one deals with a system of both neutrons and protons and the
problem in question is the number of neutron-proton pairs with a given total
angular momentum. Other companion problems are also discussed.Comment: 12 pages, Latex; some additions in section II and a brief summary at
the en
Degeneracies when only T=1 two-body interactions are present
In the nuclear f_7/2 shell, the nucleon-nucleon interaction can be
represented by the eight values E(J)=,
J=0,1,...,7, where for even J the isospin is 1, and for odd J it is 0. If we
set the T=0 (odd J) two-body matrix elements to 0 (or to a constant), we find
several degeneracies which we attempt to explain in this work. We also give
more detailed expressions than previously for the energies of the states in
question. New methods are used to explain degeneracies that are found in {45}Ti
(I=25/2- and 27/2-), {46}V (I=12^+_1 and 13^+_1, as well as I=13^+_2 and 15+),
and {47}V (I=29/2- and 31/2-).Comment: 21 pages; RevTeX4. We have filled in some holes, mainly including
more equations for the 44Ti Sectio
Alternate proof of the Rowe-Rosensteel proposition and seniority conservation
For a system with three identical nucleons in a single- shell, the states
can be written as the angular momentum coupling of a nucleon pair and the odd
nucleon. The overlaps between these non-orthonormal states form a matrix which
coincides with the one derived by Rowe and Rosensteel [Phys. Rev. Lett. {\bf
87}, 172501 (2001)]. The propositions they state are related to the eigenvalue
problems of the matrix and dimensions of the associated subspaces. In this
work, the propositions will be proven from the symmetric properties of the
symbols. Algebraic expressions for the dimension of the states, eigenenergies
as well as conditions for conservation of seniority can be derived from the
matrix.Comment: 9 pages, no figur
Three-body correlations and finite-size effects in the Moore--Read states on a sphere
Two- and three-body correlations in partially filled degenerate fermion
shells are studied numerically for various interactions between the particles.
Three distinct correlation regimes are defined, depending on the short-range
behavior of the pair pseudopotential. For pseudopotentials similar to those of
electrons in the first excited Landau level, correlations at half-filling have
a simple three-body form consisting of the maximum avoidance of the triplet
state with the smallest relative angular momentum R_3=3. In analogy to the
superharmonic criterion for Laughlin two-body correlations, their occurrence is
related to the form of the three-body pseudopotential at short range. The
spectra of a model three-body repulsion are calculated, and the zero-energy
Moore--Read ground state, its +-e/4-charged quasiparticles, and the
magnetoroton and pair-breaking bands are all identified. The quasiparticles are
correctly described by a composite fermion model appropriate for Halperin's
p-type pairing with Laughlin correlations between the pairs. However, the
Moore--Read ground state, and specially its excitations, have small overlaps
with the corresponding Coulomb eigenstates when calculated on a sphere. The
reason lies in surface curvature which affects the form of pair pseudopotential
for which the "R_3>3" three-body correlations occur. In finite systems, such
pseudopotential must be slightly superharmonic at short range (different from
Coulomb pseudopotential). However, the connection with the three-body
pseudopotential is less size-dependent, suggesting that the Moore--Read state
and its excitations are a more accurate description for experimental nu=5/2
states than could be expected from previous calculations.Comment: 12 pages, 12 figures, submitted to PR
Isoscalar g Factors of Even-Even and Odd-Odd Nuclei
We consider T=0 states in even-even and odd-odd N=Z nuclei. The g factors
that emerge are isoscalar. We find that the single j shell model gives simple
expressions for these g factors which for even-even nuclei are suprisingly
close to the collective values for K=0 bands. The g factors of many 2+ in
even-even nuclei and 1+ and 3+ states in odd-odd nuclei have g factors close to
0.5
``Fermi Liquid'' Shell Model Approach to Composite Fermion Excitation Spectra in Fractional Quantum Hall States
Numerical results for the energy spectra of electrons on a spherical
surface are used as input data to determine the quasiparticle energies and the
pairwise ``Fermi liquid'' interactions of composite Fermion (CF) excitations in
fractional quantum Hall systems. The quasiparticle energies and their
interactions are then used to determine the energy spectra, vs total
angular momentum , of states containing more than two quasiparticles. The
qualitative agreement with the numerical results gives a remarkable new
confirmation of the CF picture.Comment: LaTex, 4 pages, including 4 .eps-figures, to be appear in pr
Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity
Volatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by
alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var.
cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging
from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4).
All encoded proteins, except Cm-AAT2, were enzymatically active upon expression in yeast and show
differential substrate preferences. Cm-AAT1 protein produces a wide range of short and long-chain acyl
esters but has strong preference for the formation of E-2-hexenyl acetate and hexyl hexanoate. Cm-AAT3
also accepts a wide range of substrates but with very strong preference for producing benzyl acetate.
Cm-AAT4 is almost exclusively devoted to the formation of acetates, with strong preference for cinnamoyl
acetate. Site directed mutagenesis demonstrated that the failure of Cm-AAT2 to produce volatile esters is
related to the presence of a 268-alanine residue instead of threonine as in all active AAT proteins. Mutating
268-A into 268-T of Cm-AAT2 restored enzyme activity, while mutating 268-T into 268-A abolished
activity of Cm-AAT1. Activities of all three proteins measured with the prefered substrates sharply increase
during fruit ripening. The expression of all Cm-AAT genes is up-regulated during ripening and inhibited in
antisense ACC oxidase melons and in fruit treated with the ethylene antagonist 1-methylcyclopropene
(1-MCP), indicating a positive regulation by ethylene. The data presented in this work suggest that the
multiplicity of AAT genes accounts for the great diversity of esters formed in melon
- …
