654 research outputs found

    Effects of aminoperimidine on electrolyte transport across amphibian skin

    Get PDF
    The effect of aminoperimidine (AP)on transepithelial Na+ transport and Cl- conductance (G(Cl)) of isolated amphibian skin (Bufo viridis and Rana esculenta) was analyzed using transepithelial and intracellular electrophysiological techniques. AP, applied at concentrations between 30 and 100 mu M from the mucosal side, stimulated Na+ transport rapidly and reversibly by more than 30% of the control value due to an increase in apical membrane Na+ permeability. Influence of AP on basolateral membrane conductance and effective driving force for Na+ were negligible. Voltage-activated G(Cl) of toad skin, but not the resting, deactivated conductance, as well as spontaneously high G(Cl) in frog skin was rapidly inhibited by AP in a concentration-dependent manner. The half-maximal inhibitory concentration of 20 mu M is the highest hithero reported inhibitory power for G(Cl) in amphibian skin. The effect of AP on G(Cl) was slowly and incompletely reversible even after brief exposure to the agent. Serosal application of AP had similar, albeit delayed effects on both Nai and Cl- transport. AP did not interfere with the Cl- pathway after it was opened by 100-300 mu M CPT-cAMP, a membrane-permeable, nonhydrolyzed analogue of cAMP. Inhibition of the voltage-activated G(Cl) by AP was attenuated or missing when AP was applied during voltage perturbation to serosa-positive potentials. Since AP is positively charged at physiological pH, it suggests that the affected site is located inside the Cl- pathway at a certain distance from the external surface. AP affects then the Na+ and Cl- transport pathways independent of each other. The nature of chemical interference with AP, which is responsible for the influence on the transport of Na+ and Cl-, remains to be elucidated

    New insights into the mechanisms of phytochrome-cryptochrome coaction.

    Get PDF
    Contents Summary 547 I. Introduction 547 II. Phytochromes mediate light-induced transcription of BICs to inactivate cryptochromes 548 III. PPKs phosphorylate light-signaling proteins and histones to affect plant development 548 IV. Prospect 550 Acknowledgements 550 References 550 SUMMARY: Plants perceive and respond to light signals by multiple sensory photoreceptors, including phytochromes and cryptochromes, which absorb different wavelengths of light to regulate genome expression and plant development. Photophysiological analyses have long revealed the coordinated actions of different photoreceptors, a phenomenon referred to as the photoreceptor coaction. The mechanistic explanations of photoreceptor coactions are not fully understood. The function of direct protein-protein interaction of phytochromes and cryptochromes and common signaling molecules of these photoreceptors, such as SPA1/COP1 E3 ubiquitin ligase complex and bHLH transcription factors PIFs, would partially explain phytochrome-cryptochrome coactions. In addition, newly discovered proteins that block cryptochrome photodimerization or catalyze cryptochrome phosphorylation may also participate in the phytochrome and cryptochrome coaction. This Tansley insight, which is not intended to make a comprehensive review of the studies of photoreceptor coactions, attempts to highlight those recent findings and their possible roles in the photoreceptor coaction

    The metabolic inter-relationships between changes in waist circumference, triglycerides, insulin sensitivity and small, dense low-density lipoprotein particles with acute weight loss in clinically obese children and adolescents.

    Get PDF
    OBJECTIVE: Small, dense low-density lipoprotein (LDL) particles are highly atherogenic and strongly associated with obesity-related dyslipidemia. The metabolic inter-relationships between weight loss induced changes in waist circumference, triglycerides, insulin sensitivity and small-dense LDL particles in clinically obese children and adolescents have not been studied. METHODS: Seventy-five clinically obese boys and girls (standardized body mass index 3.07 ± 0.59, aged 8-18 years) were recruited. Anthropometric, body composition and cardiometabolic risk factors were measured pre- and post-weight loss. RESULTS: There were highly significant reductions in anthropometric, body composition and cardiometabolic risk factors. Triglyceride change was positively correlated with LDL peak particle density and percentage LDL pattern B changes (relative abundance of small, dense LDL particles). Multiple regression analyses showed that changes in triglyceride concentration accounted for between 24 and 18% of the variance in LDL peak particle density and percentage LDL pattern B change, respectively. Changes in waist circumference and insulin sensitivity did not predict these changes in LDL characteristics. CONCLUSION: Acute and highly significant weight loss significantly decreased LDL peak particle density and percentage LDL pattern B. The change in triglycerides was a strong predictor of LDL peak particle density and percentage LDL pattern B change

    Fisher Renormalization for Logarithmic Corrections

    Get PDF
    For continuous phase transitions characterized by power-law divergences, Fisher renormalization prescribes how to obtain the critical exponents for a system under constraint from their ideal counterparts. In statistical mechanics, such ideal behaviour at phase transitions is frequently modified by multiplicative logarithmic corrections. Here, Fisher renormalization for the exponents of these logarithms is developed in a general manner. As for the leading exponents, Fisher renormalization at the logarithmic level is seen to be involutory and the renormalized exponents obey the same scaling relations as their ideal analogs. The scheme is tested in lattice animals and the Yang-Lee problem at their upper critical dimensions, where predictions for logarithmic corrections are made.Comment: 10 pages, no figures. Version 2 has added reference

    Time in Quantum Mechanics and Quantum Field Theory

    Full text link
    W. Pauli pointed out that the existence of a self-adjoint time operator is incompatible with the semibounded character of the Hamiltonian spectrum. As a result, people have been arguing a lot about the time-energy uncertainty relation and other related issues. In this article, we show in details that Pauli's definition of time operator is erroneous in several respects.Comment: 20 page

    Blue Light-Dependent in Vivo and in Vitro Phosphorylation of Arabidopsis Cryptochrome 1

    Full text link

    Chapter 3: Pathophysiology

    Get PDF
    The hallmark pathophysiologic feature of dilated cardiomyopathy is systolic dysfunction. Several pathogenetic mechanisms appear to be operative. These include increased hemodynamic overload, ventricular remodeling, excessive neurohumoral stimulation, abnormal myocyte calcium cycling, excessive or inadequate proliferation of the extracellular matrix, accelerated apoptosis, and genetic mutations. Although beneficial in the early stages of heart failure, these compensatory mechanisms eventually lead to a vicious cycle of worsening heart failure. Genetic causes account for 30\u201340% of DCM and involve genes that encode a heterogeneous group of molecules that participate in force generation, force transmission, sarcomere integrity, cytoskeletal and nuclear architecture, electrolyte homeostasis, mitochondrial function, and transcription. Additional research will improve our understanding of the complex and longitudinal molecular changes that lead from gene mutation to clinical expressio

    Endocrine Complications after Hematopoietic Stem Cell Transplantation during Childhood and Adolescence

    Get PDF
    Long-term survivors of hematopoietic stem cell transplantation (HSCT) during childhood and adolescence are at risk of developing endocrine complications. The purpose of this study was to evaluate the long-term endocrine complications and their associated risk factors among such patients. We reviewed the data from 111 patients (59 males and 52 females) who underwent HSCT at the mean age of 8.3±4.1 yr. Thirty patients (27.0%) had growth impairment, and seven (21.2%) out of 33 patients who attained final height reached final height below 2 standard deviation (SD). The final height SD score of the patients conditioned with total body irradiation (TBI) was significantly lower than that of the patients conditioned without TBI (-1.18±1.14 vs. -0.19±0.78, P=0.011). Thirteen patients (11.7%) developed hypothyroidism (11 subclinical, 2 central) 3.8±1.8 (range 1.6-6.2) yr after HSCT. Nineteen (65.5%) out of 29 females had evidence of gonadal dysfunction, and 18 (64.3%) out of 28 males had evidence of gonadal dysfunction. The risk for gonadal dysfunction was significantly higher in females conditioned with busulfan/cyclophosphamide (P=0.003). These results suggest that the majority of patients treated with HSCT during childhood and adolescence have one or more endocrine complications. Therefore, multiple endocrine functions should be monitored periodically after HSCT until they reach adult age
    corecore