230 research outputs found

    Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems

    Get PDF
    A validated multi-physics numerical model that accounts for charge and species conservation, fluid flow, and electrochemical processes has been used to analyze the performance of solar-driven photoelectrochemical water-splitting systems. The modeling has provided an in-depth analysis of conceptual designs, proof-of-concepts, feasibility investigations, and quantification of performance. The modeling has led to the formulation of design guidelines at the system and component levels, and has identified quantifiable gaps that warrant further research effort at the component level. The two characteristic generic types of photoelectrochemical systems that were analyzed utilized: (i) side-by-side photoelectrodes and (ii) back-to-back photoelectrodes. In these designs, small electrode dimensions (mm to cm range) and large electrolyte heights were required to produce small overall resistive losses in the system. Additionally, thick, non-permeable separators were required to achieve acceptably low rates of product crossover

    Comparison between the electrical junction properties of H-terminated and methyl-terminated individual Si microwire/polymer assemblies for photoelectrochemical fuel production

    Get PDF
    The photoelectrical properties and stability of individual p-silicon (Si) microwire/polyethylenedioxythiophene/polystyrene sulfonate:Nafion/n-Si microwire structures, designed for use as arrays for solar fuel production, were investigated for both H-terminated and CH_3-terminated Si microwires. Using a tungsten probe method, the resistances of individual wires, as well as between individual wires and the conducting polymer, were measured vs. time. For the H-terminated samples, the n-Si/polymer contacts were initially rectifying, whereas p-Si microwire/polymer contacts were initially ohmic, but the resistance of both the n-Si and p-Si microwire/polymer contacts increased over time. In contrast, relatively stable, ohmic behavior was observed at the junctions between CH_3-terminated p-Si microwires and conducting polymers. CH_3-terminated n-Si microwire/polymer junctions demonstrated strongly rectifying behavior, attributable to the work function mismatch between the Si and polymer. Hence, a balance must be found between the improved stability of the junction electrical properties achieved by passivation, and the detrimental impact on the effective resistance associated with the additional rectification at CH_3-terminated n-Si microwire/polymer junctions. Nevertheless, the current system under study would produce a resistance drop of ~20 mV during operation under 100 mW cm^(−2) of Air Mass 1.5 illumination with high quantum yields for photocurrent production in a water-splitting device

    Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting

    Get PDF
    Laboratory demonstrations of spontaneous photoelectrochemical (PEC) solar water splitting cells are reviewed. Reported solar-to-hydrogen (STH) conversion efficiencies range from 10% STH efficiency using potentially less costly materials have been reported. Device stability is a major challenge for the field, as evidenced by lifetimes of less than 24 hours in all but a few reports. No globally accepted protocol for evaluating and certifying STH efficiencies and lifetimes exists. It is our recommendation that a protocol similar to that used by the photovoltaic community be adopted so that future demonstrations of solar PEC water splitting can be compared on equal grounds

    Measurement of the Electrical Resistance of n-Type Si Microwire/p-Type Conducting Polymer Junctions for Use in Artificial Photosynthesis

    Get PDF
    The junction between n-type silicon microwires and p-type conducting polymer PEDOT:PSS (poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)) was investigated using a soft contact method. Dopant levels within the microwires were varied during growth to give a highly-doped region for improved contact and a low-doped region for light absorption. The low-doped region of the microwires had a dopant density of 5 X 10(17) cm(-3) while the highly-doped region had an increased dopant density of 5 X 10(18) cm(-3) over similar to 20 mu m. Uniform, highly-doped microwires, with a dopant density of 4 X 10(19) cm(3), were used as a comparison. Regions of highly-doped n-type Si microwires (N-D = 5 X 10(18) cm(-3) and 4 X 10(19) cm(-3)) contacted by PEDOT:PSS showed a significantly lower junction resistance compared to the low-doped (3 X 10(17) cm(-3)) regions of the microwire. Junctions incorporating the metal catalyst used during growth were also investigated. Microwires with copper at the interface had similar currentvoltage characteristics to those observed for the highly-doped microwire/conducting polymer junction; however, junctions that incorporated gold exhibited significantly lower resistances, decreasing the iR contribution of the junction by an order of magnitude with respect to the total voltage drop in the entire structure
    corecore