141 research outputs found
Cellulolytic Bacteria in the foregut of the dromedary camel (Camelus dromedarius)
Foregut digesta from five feral dromedary camels were inoculated into three different enrichment media: cotton thread, filter paper, and neutral detergent fiber. A total of 283 16S rRNA gene sequences were assigned to 33 operational taxonomic units by using 99% species-level identity. LIBSHUFF revealed significant differences in the community composition across all three libraries
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence.
BACKGROUND: The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx). This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy. METHODOLOGY/PRINCIPAL FINDINGS: To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo. CONCLUSIONS/SIGNIFICANCE: TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design
Neo-Anal Sphincter Fabrication in the Rat
Undergraduate Research Opportunity Program (UROP)http://deepblue.lib.umich.edu/bitstream/2027.42/116119/1/Neo_Anal_SphincterFabrication_Rats.pd
Innovation Practices in Emerging Economies: Do University Partnerships Matter?
Enterprises’ resources and capabilities determine their ability to achieve competitive advantage. In this regard, the key innovation challenges that enterprises face are liabilities associated with their age and size, and the entry barriers imposed on them. In this line, a growing number of enterprises are starting to implement innovation practices in which they employ both internal/external flows of knowledge in order to explore/exploit innovation in collaboration with commercial or scientific agents. Within this context, universities play a significant role providing fertile knowledge-intensive environments to support the exploration and exploitation of innovative and entrepreneurial ideas, especially in emerging economies, where governments have created subsidies to promote enterprise innovation through compulsory university partnerships. Based on these ideas, the purpose of this exploratory research is to provide a better understanding about the role of universities on enterprises’ innovation practices in emerging economies. More concretely, in the context of Mexico, we explored the enterprises’ motivations to collaborate with universities in terms of innovation purposes (exploration and exploitation) or alternatives to access to public funds (compulsory requirement of being involved in a university partnership). Using a sample of 10,167 Mexican enterprises in the 2012 Research and Technological Development Survey collected by the Mexican National Institute of Statistics and Geography, we tested a multinomial regression model. Our results provide insights about the relevant role of universities inside enterprises’ exploratory innovation practices, as well as, in the access of R&D research subsidies
Recommended from our members
Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations
Many plant species adapted to P-impoverished soils, including jarrah (Eucalyptus marginata), develop toxicity symptoms when exposed to high doses of phosphate (Pi) and its analogs such as phosphite (Phi) and arsenate (AsV). The present study was undertaken to investigate the effects of fungal symbionts Scutellospora calospora, Scleroderma sp., and Austroboletus occidentalis on the response of jarrah to highly toxic pulses (1.5 mmol kg−1 soil) of Pi, Phi, and AsV. S. calospora formed an arbuscular mycorrhizal (AM) symbiosis while both Scleroderma sp. and A. occidentalis established a non-colonizing symbiosis with jarrah plants. All these interactions significantly improved jarrah growth and Pi uptake under P-limiting conditions. The AM fungal colonization naturally declines in AM-eucalypt symbioses after 2–3 months; however, in the present study, the high Pi pulse inhibited the decline of AM fungal colonization in jarrah. Four weeks after exposure to the Pi pulse, plants inoculated with S. calospora had significantly lower toxicity symptoms compared to non-mycorrhizal (NM) plants, and all fungal treatments induced tolerance against Phi toxicity in jarrah. However, no tolerance was observed for AsV-treated plants even though all inoculated plants had significantly lower shoot As concentrations than the NM plants. The transcript profile of five jarrah high-affinity phosphate transporter (PHT1 family) genes in roots was not altered in response to any of the fungal species tested. Interestingly, plants exposed to high Pi supplies for 1 day did not have reduced transcript levels for any of the five PHT1 genes in roots, and transcript abundance of four PHT1 genes actually increased. It is therefore suggested that jarrah, and perhaps other P-sensitive perennial species, respond positively to Pi available in the soil solution through increasing rather than decreasing the expression of selected PHT1 genes. Furthermore, Scleroderma sp. can be considered as a fungus with dual functional capacity capable of forming both ectomycorrhizal and non-colonizing associations, where both pathways are always accompanied by evident growth and nutritional benefits
Simultaneous lateral and posterior ponticles resulting in the formation of a vertebral artery tunnel of the atlas: case report and review of the literature. Folia Neuropathol
Case report A b s t r a c t The foramen arcuale is infrequently found and is potentially a clinically/surgically significant anatomical variation of the atlas. When present, the vertebral artery travels through this bony ring after exiting the transverse foramen of the atlas and prior to entering the cranium. We present a case of an adult female skeleton noted to harbor both a foramen arcuale and a lateral ponticle that resulted in the formatio
Mice Deficient in GEM GTPase Show Abnormal Glucose Homeostasis Due to Defects in Beta-Cell Calcium Handling
Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir) family regulates calcium channel handling in other cell types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells. The aim of this study was to explore the role of Gem in insulin secretion. We hypothesised that Gem may regulate insulin secretion and thus affect glucose tolerance in vivo
Primary medical care in Irish prisons
BACKGROUND: An industrial dispute between prison doctors and the Irish Prison Service (IPS) took place in 2004. Part of the resolution of that dispute was that an independent review of prison medical and support services be carried out by a University Department of Primary Care. The review took place in 2008 and we report here on the principal findings of that review.
METHODS: This study utilised a mixed methods approach. An independent expert medical evaluator (one of the authors, DT) inspected the medical facilities, equipment and relevant custodial areas in eleven of the fourteen prisons within the IPS. Semistructured interviews took place with personnel who had operational responsibility for delivery of prison medical care. Prison doctors completed a questionnaire to elicit issues such as allocation of clinician's time, nurse and administrative support and resources available.
RESULTS: There was wide variation in the standard of medical facilities and infrastructure provided across the IPS. The range of medical equipment available was generally below that of the equivalent general practice scheme in the community. There is inequality within the system with regard to the ratio of doctor-contracted time relative to the size of the prison population. There is limited administrative support, with the majority of prisons not having a medical secretary. There are few psychiatric or counselling sessions available.
CONCLUSIONS: People in prison have a wide range of medical care needs and there is evidence to suggest that these needs are being met inconsistently in Irish prisons
Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells
<p>Abstract</p> <p>Background</p> <p>The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells.</p> <p>Methods</p> <p>Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay.</p> <p>Results</p> <p>DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure.</p> <p>Conclusion</p> <p>DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.</p
- …
