53 research outputs found
Chiral Antioxidant-based Gold Nanoclusters Reprogram DNA Epigenetic Patterns
Epigenetic modifications sit ‘on top of’ the genome and influence DNA transcription, which can force a significant impact on cellular behavior and phenotype and, consequently human development and disease. Conventional methods for evaluating epigenetic modifications have inherent limitations and, hence, new methods based on nanoscale devices are needed. Here, we found that antioxidant (glutathione) chiral gold nanoclusters induce a decrease of 5-hydroxymethylcytosine (5hmC), which is an important epigenetic marker that associates with gene transcription regulation. This epigenetic change was triggered partially through ROS activation and oxidation generated by the treatment with glutathione chiral gold nanoclusters, which may inhibit the activity of TET proteins catalyzing the conversion of 5-methylcytosine (5mC) to 5hmC. In addition, these chiral gold nanoclusters can downregulate TET1 and TET2 mRNA expression. Alteration of TET-5hmC signaling will then affect several downstream targets and be involved in many aspects of cell behavior. We demonstrate for the first time that antioxidant-based chiral gold nanomaterials have a direct effect on epigenetic process of TET-5hmC pathways and reveal critical DNA demethylation patterns
Human CIK Cells Loaded with Au Nanorods as a Theranostic Platform for Targeted Photoacoustic Imaging and Enhanced Immunotherapy and Photothermal Therapy
How to realize targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer has become a great challenge. Herein, we reported for the first time that human cytokine-induced killer cells (CIK) loaded with gold nanorods were used for targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer. Silica-modified gold nanorods were prepared; then incubated with human cytokine-induced killer cells (CIK), resultant human CIK cells loaded with Au nanorods were evaluated for their cytotoxicity, targeted ability of gastric cancer in vitro and in vivo, immunotherapy, and photothermal therapy efficacy. In vitro cell experiment shows that human CIK cells labeled with gold nanorods actively target gastric cancer MGC803 cells, inhibit growth of MGC803 cells by inducing cell apoptosis, and kill MGC803 cells under low power density near-infrared (NIR) laser treatment (808-nm continuous wave laser, 1.5 W/cm2, 3 min). In vivo experiment results showed that human CIK cells labeled with gold nanorods could target actively and image subcutaneous gastric cancer vessels via photoacoustic imaging at 4 h post-injection, could enhance immunotherapy efficacy by up-regulating cytokines such as IL-1, IL-12, IL-2, IL-4, IL-17, and IFN-γ, and kill gastric cancer tissues by photothermal therapy via direct injection into tumor site under near-infrared (NIR) laser irradiation. High-performance human CIK cells labeled with Au nanorods are a good novel theranostic platform to exhibit great potential in applications such as tumor-targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy in the near future
Human CIK Cells Loaded with Au Nanorods as a Theranostic Platform for Targeted Photoacoustic Imaging and Enhanced Immunotherapy and Photothermal Therapy
Metabolic Profiles and High-Accuracy Diagnosis Model Based on Plasma Metabolomics of Gastric Cancer Patients
Technical Scheme and Application Prospects of Oil Shale In Situ Conversion: A Review of Current Status
Petroleum was the most-consumed energy source in the world during the past century. With the continuous global consumption of conventional oil, shale oil is known as a new growth point in oil production capacity. However, medium-low mature shale oil needs to be exploited after in situ conversion due to the higher viscosity of oil and the lower permeability of shale. This paper summarizes previous studies on the process of kerogen cracking to generate oil and gas, and the development of micropore structures and fractures in organic-rich shale formations during in situ conversion. The results show that the temperature of kerogen cracking to generate oil and gas is generally 300-450 degrees C during the oil shale in situ conversion process (ICP). In addition, a large number of microscale pores and fractures are formed in oil shale formation, which forms a connecting channel and improves the permeability of the oil shale formation. In addition, the principles and the latest technical scheme of ICP, namely, conduction heating, convection heating, reaction-heat heating, and radiation heating, are introduced in detail. Meanwhile, this paper discusses the influence of the heating mode, formation conditions, the distribution pattern of wells, and catalysts on the energy consumption of ICP technology in the process of oil shale in situ conversion. Lastly, a fine description of the hydrocarbon generation process of the target formation, the development of new and efficient catalysts, and the support of carbon capture and storage in depleted organic-rich shale formations after in situ conversion are important for improving the future engineering efficiency of ICP
Research on mechanical properties and chemical compositions of bottom stems of medicago sativa in harvesting period
- …
