604 research outputs found
Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor
High-temperature (high-Tc) superconductivity in the copper oxides arises from
electron or hole doping of their antiferromagnetic (AF) insulating parent
compounds. The evolution of the AF phase with doping and its spatial
coexistence with superconductivity are governed by the nature of charge and
spin correlations and provide clues to the mechanism of high-Tc
superconductivity. Here we use a combined neutron scattering and scanning
tunneling spectroscopy (STS) to study the Tc evolution of electron-doped
superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing
process. We find that spin excitations detected by neutron scattering have two
distinct modes that evolve with Tc in a remarkably similar fashion to the
electron tunneling modes in STS. These results demonstrate that
antiferromagnetism and superconductivity compete locally and coexist spatially
on nanometer length scales, and the dominant electron-boson coupling at low
energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include
Beyond just bacteria: Functional biomes in the gut ecosystem including virome, mycobiome, archaeome and helminths
Gut microbiota refers to a complex network of microbes, which exerts a marked influenceon the host’s health. It is composed of bacteria, fungi, viruses, and helminths. Bacteria, or collectively,the bacteriome, comprises a significant proportion of the well-characterized microbiome. However,the other communities referred to as ‘dark matter’ of microbiomes such as viruses (virome), fungi(mycobiome), archaea (archaeome), and helminths have not been completely elucidated. Developmentof new and improved metagenomics methods has allowed the identification of complete genomesfrom the genetic material in the human gut, opening new perspectives on the understanding ofthe gut microbiome composition, their importance, and potential clinical applications. Here, wereview the recent evidence on the viruses, fungi, archaea, and helminths found in the mammalian gut,detailing their interactions with the resident bacterial microbiota and the host, to explore the potentialimpact of the microbiome on host’s health. The role of fecal virome transplantations, pre-, pro-, andsyn-biotic interventions in modulating the microbiome and their related concerns are also discussed
A Step Forward in Molecular Diagnostics of Lyssaviruses – Results of a Ring Trial among European Laboratories
Rabies is a lethal and notifiable zoonotic disease for which diagnostics have to meet the highest standards. In recent years, an evolution was especially seen in molecular diagnostics with a wide variety of different detection methods published. Therefore, a first international ring trial specifically designed on the use of reverse transcription polymerase chain reaction (RT-PCR) for detection of lyssavirus genomic RNA was organized. The trial focussed on assessment and comparison of the performance of conventional and real-time assays. In total, 16 European laboratories participated. All participants were asked to investigate a panel of defined lyssavirus RNAs, consisting of Rabies virus (RABV) and European bat lyssavirus 1 and 2 (EBLV-1 and -2) RNA samples, with systems available in their laboratory. The ring trial allowed the important conclusion that conventional RT-PCR assays were really robust assays tested with a high concordance between different laboratories and assays. The real-time RT-PCR system by Wakeley et al. (2005) in combination with an intercalating dye, and the combined version by Hoffmann and co-workers (2010) showed good sensitivity for the detection of all RABV samples included in this test panel. Furthermore, all used EBLV-specific assays, real-time RT-PCRs as well as conventional RT-PCR systems, were shown to be suitable for a reliable detection of EBLVs. It has to be mentioned that differences were seen in the performance between both the individual RT-PCR systems and the laboratories. Laboratories which used more than one molecular assay for testing the sample panel always concluded a correct sample result. Due to the markedly high genetic diversity of lyssaviruses, the application of different assays in diagnostics is needed to achieve a maximum of diagnostic accuracy. To improve the knowledge about the diagnostic performance proficiency testing at an international level is recommended before using lyssavirus molecular diagnostics e.g. for confirmatory testing
G-quadruplex structures mark human regulatory chromatin
G-quadruplex (G4) structural motifs have been linked to transcription, replication and genome instability and are implicated in cancer and other diseases. However, it is crucial to demonstrate the bona fide formation of G4 structures within an endogenous chromatin context. Herein we address this through the development of G4 ChIP-seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach. We find ∼10,000 G4 structures in human chromatin, predominantly in regulatory, nucleosome-depleted regions. G4 structures are enriched in the promoters and 5' UTRs of highly transcribed genes, particularly in genes related to cancer and in somatic copy number amplifications, such as . Strikingly, and enhanced G4 formation are associated with increased transcriptional activity, as shown by HDAC inhibitor-induced chromatin relaxation and observed in immortalized as compared to normal cellular states. Our findings show that regulatory, nucleosome-depleted chromatin and elevated transcription shape the endogenous human G4 DNA landscape.European Molecular Biology Organization (EMBO Long-Term Fellowship), University of Cambridge, Cancer Research UK (Grant ID: C14303/A17197), Wellcome Trust (Grant ID: 099232/z/12/z
Gut Microbial Changes, Interactions, and Their Implications on Human Lifecycle: An Ageing Perspective.
Gut microbiota is established during birth and evolves with age, mostly maintaining the commensal relationship with the host. A growing body of clinical evidence suggests an intricate relationship between the gut microbiota and the immune system. With ageing, the gut microbiota develops significant imbalances in the major phyla such as the anaerobic Firmicutes and Bacteroidetes as well as a diverse range of facultative organisms, resulting in impaired immune responses. Antimicrobial therapy is commonly used for the treatment of infections; however, this may also result in the loss of normal gut flora. Advanced age, antibiotic use, underlying diseases, infections, hormonal differences, circadian rhythm, and malnutrition, either alone or in combination, contribute to the problem. This nonbeneficial gastrointestinal modulation may be reversed by judicious and controlled use of antibiotics and the appropriate use of prebiotics and probiotics. In certain persistent, recurrent settings, the option of faecal microbiota transplantation can be explored. The aim of the current review is to focus on the establishment and alteration of gut microbiota, with ageing. The review also discusses the potential role of gut microbiota in regulating the immune system, together with its function in healthy and diseased state
Synthetic biology: Understanding biological design from synthetic circuits
An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics
Obstacles Uncovering System for Slender Pathways Using Unmanned Aerial Vehicles with Automatic Image Localization Technique
In this study, unidentified flying machines are built with real-time monitoring in mid-course settings for obstacle avoidance in mind. The majority of the currently available methods are implemented as comprehensive monitoring systems, with significant success in monitored applications like bridges, railways, etc. So, the predicted model is developed exclusively for specific monitoring settings, as opposed to the broad conditions that are used by the current approaches. Also, in the design model, the first steps are taken by limiting the procedure to specific heights, and the input thrust that is provided for take up operation is kept to a minimum. Due to the improved altitudes, the velocity and acceleration units have been cranked up on purpose, making it possible to sidestep intact objects. In addition, Advanced Image Mapping Localization (AIML) is used to carry out the implementation process, which identifies stable sites at the correct rotation angle. Besides, Cyphal protocol integration improves the security of the data-gathering process by transmitting information gathered from sensing devices. The suggested system is put to the test across five different case studies, where the designed Unmanned aerial vehicle can able to detect 25 obstacles in the narrow paths in considered routs but existing approach can able to identify only 14 obstacle in the same routes
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
Advances in the therapy of Alzheimer's disease: Targeting amyloid beta and tau and perspectives for the future
Worldwide multidisciplinary translational research has led to a growing knowledge of the genetics and molecular pathogenesis of Alzheimer's disease (AD) indicating that pathophysiological brain alterations occur decades before clinical signs and symptoms of cognitive decline can be diagnosed. Consequently, therapeutic concepts and targets have been increasingly focused on early-stage illness before the onset of dementia; and distinct classes of compounds are now being tested in clinical trials. At present, there is a growing consensus that therapeutic progress in AD delaying disease progression would significantly decrease the expanding global burden. The evolving hypothesis- and evidence-based generation of new diagnostic research criteria for early-stage AD has positively impacted the development of clinical trial designs and the characterization of earlier and more specific target populations for trials in prodromal as well as in pre- and asymptomatic at-risk stages of AD
- …
