15,330 research outputs found
Joint modeling of recurrent event processes and intermittently observed time-varying binary covariate processes
When conducting recurrent event data analysis, it is common to assume that the covariate processes are observed throughout the follow-up period. In most applications, however, the values of time-varying covariates are only observed periodically rather than continuously. A popular ad-hoc approach is to carry forward the last observed covariate value until it is measured again. This simple approach, however, usually leads to biased estimation. To tackle this problem, we propose to model the covariate effect on the risk of the recurrent events through jointly modeling the recurrent event process and the longitudinal measures. Despite its popularity, estimation of the joint model with binary longitudinal measurements remains a challenge, because the standard linear mixed effects model approach is not appropriate for binary measures. In this paper, we postulate a Markov model for the binary covariate process and a random-effect proportional intensity model for the recurrent event process. We use a Markov chain Monte Carlo algorithm to estimate all the unknown parameters. The performance of the proposed estimator is evaluated via simulations. The methodology is applied to an observational study designed to evaluate the effect of Group A streptococcus on pharyngitis among school children in India
Show Me the Money: Dynamic Recommendations for Revenue Maximization
Recommender Systems (RS) play a vital role in applications such as e-commerce
and on-demand content streaming. Research on RS has mainly focused on the
customer perspective, i.e., accurate prediction of user preferences and
maximization of user utilities. As a result, most existing techniques are not
explicitly built for revenue maximization, the primary business goal of
enterprises. In this work, we explore and exploit a novel connection between RS
and the profitability of a business. As recommendations can be seen as an
information channel between a business and its customers, it is interesting and
important to investigate how to make strategic dynamic recommendations leading
to maximum possible revenue. To this end, we propose a novel \model that takes
into account a variety of factors including prices, valuations, saturation
effects, and competition amongst products. Under this model, we study the
problem of finding revenue-maximizing recommendation strategies over a finite
time horizon. We show that this problem is NP-hard, but approximation
guarantees can be obtained for a slightly relaxed version, by establishing an
elegant connection to matroid theory. Given the prohibitively high complexity
of the approximation algorithm, we also design intelligent heuristics for the
original problem. Finally, we conduct extensive experiments on two real and
synthetic datasets and demonstrate the efficiency, scalability, and
effectiveness our algorithms, and that they significantly outperform several
intuitive baselines.Comment: Conference version published in PVLDB 7(14). To be presented in the
VLDB Conference 2015, in Hawaii. This version gives a detailed submodularity
proo
- …
