5,753 research outputs found

    Null geodesics and gravitational lensing in a nonsingular spacetime

    Get PDF
    In this paper, the null geodesics and gravitational lensing in a nonsingular spacetime are investigated. According to the nature of the null geodesics, the spacetime is divided into several cases. In the weak deflection limit, we find the influence of the nonsingularity parameter qq on the positions and magnifications of the images is negligible. In the strong deflection limit, the coefficients and observables for the gravitational lensing in a nonsingular black hole background and a weakly nonsingular spacetime are obtained. Comparing these results, we find that, in a weakly nonsingular spacetime, the relativistic images have smaller angular position and relative magnification, but larger angular separation than that of a nonsingular black hole. These results might offer a way to probe the spacetime nonsingularity parameter and put a bound on it by the astronomical instruments in the near future.Comment: 15 pages, 5 figures, 1 tabl

    Charged Spinning Black Holes as Particle Accelerators

    Full text link
    It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin aa but also on the charge QQ of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin aa of the extremal black hole satisfies 13aM1\frac{1}{\sqrt{3}}\leq \frac{a}{M}\leq 1, where MM is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge QQ.Comment: 14 pages, 1 figure, conclusions corrected, to appear in PR

    Gravity Localization and Effective Newtonian Potential for Bent Thick Branes

    Full text link
    In this letter, we first investigate the gravity localization and mass spectrum of gravity KK modes on de Sitter and Anti-de Sitter thick branes. Then, the effective Newtonian gravitational potentials for these bent branes are discussed by the two typical examples. The corrections of the Newtonian potential turns out to be ΔU(r)1/r2\Delta U(r)\sim 1/r^{2} at small rr for both cases. These corrections are very different from that of the Randall-Sundrum brane model ΔU(r)1/r3\Delta U(r)\sim 1/r^{3}.Comment: 6 pages, 2 figure

    Cosmological Time Dilation in Durations of Swift Long Gamma-Ray Bursts

    Full text link
    Cosmological time dilation is a fundamental phenomenon in an expanding universe, which stresses that both the duration and wavelength of the emitted light from a distant object at the redshift zz will be dilated by a factor of 1+z1+z at the observer. By using a sample of 139 \emph{Swift} long GRBs with known redshift (z8.2z\leq8.2), we measure the observed duration (T90T_{90}) in the observed energy range between 140/(1+z)140/(1+z) keV and 350/(1+z)350/(1+z) keV, corresponding to a fixed energy range of 140-350 keV in the rest frame. We obtain a significant correlation between the duration and the factor 1+z1+z, i.e., T90=10.5(1+z)0.94±0.26T_{\rm{90}}=10.5(1+z)^{0.94\pm0.26}, which is well consistent with that expected from cosmological time dilation effect.Comment: 19 pages, 7 figures, 1 table. Accepted for publication in ApJ

    Geometric curvatures of plane symmetry black hole

    Get PDF
    In this paper, we study the properties and thermodynamic stability of the plane symmetry black hole from the viewpoint of geometry. Weinhold metric and Ruppeiner metric are obtained, respectively. The Weinhold curvature gives phase transition points, which correspond to the first-order phase transition only at N=1, where NN is a parameter in the plane symmetry black hole. While the Ruppeiner one shows first-order phase transition points for arbitrary N1N\neq 1. Both of which give no any information about the second-order phase transition. Considering the Legendre invariant proposed by Quevedo et. al., we obtain a unified geometry metric, which gives a correctly the behavior of the thermodynamic interactions and phase transitions. The geometry is also found to be curved and the scalar curvature goes to negative infinity at the Davies' phase transition points when the logarithmic correction is included.Comment: 16 pages, 6 figure
    corecore