1,258 research outputs found

    Some one-sided estimates for oscillatory singular integrals

    Full text link
    The purpose of this paper is to establish some one-sided estimates for oscillatory singular integrals. The boundedness of certain oscillatory singular integral on weighted Hardy spaces H+1(w)H^{1}_{+}(w) is proved. It is here also show that the H+1(w)H^{1}_{+}(w) theory of oscillatory singular integrals above cannot be extended to the case of H+q(w)H^{q}_{+}(w) when 0<q<10<q<1 and wAp+w\in A_{p}^{+}, a wider weight class than the classical Muckenhoupt class. Furthermore, a criterion on the weighted LpL^{p}-boundednesss of the oscillatory singular integral is given.Comment: 24 pages, Nonlinear Anal. 201

    Sketch-based subspace clustering of hyperspectral images

    Get PDF
    Sparse subspace clustering (SSC) techniques provide the state-of-the-art in clustering of hyperspectral images (HSIs). However, their computational complexity hinders their applicability to large-scale HSIs. In this paper, we propose a large-scale SSC-based method, which can effectively process large HSIs while also achieving improved clustering accuracy compared to the current SSC methods. We build our approach based on an emerging concept of sketched subspace clustering, which was to our knowledge not explored at all in hyperspectral imaging yet. Moreover, there are only scarce results on any large-scale SSC approaches for HSI. We show that a direct application of sketched SSC does not provide a satisfactory performance on HSIs but it does provide an excellent basis for an effective and elegant method that we build by extending this approach with a spatial prior and deriving the corresponding solver. In particular, a random matrix constructed by the Johnson-Lindenstrauss transform is first used to sketch the self-representation dictionary as a compact dictionary, which significantly reduces the number of sparse coefficients to be solved, thereby reducing the overall complexity. In order to alleviate the effect of noise and within-class spectral variations of HSIs, we employ a total variation constraint on the coefficient matrix, which accounts for the spatial dependencies among the neighbouring pixels. We derive an efficient solver for the resulting optimization problem, and we theoretically prove its convergence property under mild conditions. The experimental results on real HSIs show a notable improvement in comparison with the traditional SSC-based methods and the state-of-the-art methods for clustering of large-scale images

    Assisting classical paintings restoration : efficient paint loss detection and descriptor-based inpainting using shared pretraining

    Get PDF
    In the restoration process of classical paintings, one of the tasks is to map paint loss for documentation and analysing purposes. Because this is such a sizable and tedious job automatic techniques are highly on demand. The currently available tools allow only rough mapping of the paint loss areas while still requiring considerable manual work. We develop here a learning method for paint loss detection that makes use of multimodal image acquisitions and we apply it within the current restoration of the Ghent Altarpiece. Our neural network architecture is inspired by a multiscale convolutional neural network known as U-Net. In our proposed model, the downsampling of the pooling layers is omitted to enforce translation invariance and the convolutional layers are replaced with dilated convolutions. The dilated convolutions lead to denser computations and improved classification accuracy. Moreover, the proposed method is designed such to make use of multimodal data, which are nowadays routinely acquired during the restoration of master paintings, and which allow more accurate detection of features of interest, including paint losses. Our focus is on developing a robust approach with minimal user-interference. Adequate transfer learning is here crucial in order to extend the applicability of pre-trained models to the paintings that were not included in the training set, with only modest additional re-training. We introduce a pre-training strategy based on a multimodal, convolutional autoencoder and we fine-tune the model when applying it to other paintings. We evaluate the results by comparing the detected paint loss maps to manual expert annotations and also by running virtual inpainting based on the detected paint losses and comparing the virtually inpainted results with the actual physical restorations. The results indicate clearly the efficacy of the proposed method and its potential to assist in the art conservation and restoration processes

    A novel approach to design low-cost two-stage frequency-response masking filters

    Get PDF
    The multistage frequency-response masking (FRM) technique is widely used to reduce the complexity of a filter when the transition bandwidth is extremely small. In this brief, a real generalized two-stage FRM filter without any constraint on the subfilters or the interpolation factors was proposed. New principles and equations were deduced to determine the design parameters. The subfilters were then jointly optimized using non-linear optimization. Experiential results show that when the proposed algorithm obtains different solutions with the conventional algorithm, the solution of the proposed approach is better with less number of filter coefficients and sometimes with lower delay as well than the conventional two-stage FRM, which can lead to a reduced hardware cost in applications

    A deep-neural-network-based hybrid method for semi-supervised classification of polarimetric SAR data

    Get PDF
    This paper proposes a deep-neural-network-based semi-supervised method for polarimetric synthetic aperture radar (PolSAR) data classification. The proposed method focuses on achieving a well-trained deep neural network (DNN) when the amount of the labeled samples is limited. In the proposed method, the probability vectors, where each entry indicates the probability of a sample associated with a category, are first evaluated for the unlabeled samples, leading to an augmented training set. With this augmented training set, the parameters in the DNN are learned by solving the optimization problem, where the log-likelihood cost function and the class probability vectors are used. To alleviate the “salt-and-pepper” appearance in the classification results of PolSAR images, the spatial interdependencies are incorporated by introducing a Markov random field (MRF) prior in the prediction step. The experimental results on two realistic PolSAR images demonstrate that the proposed method effectively incorporates the spatial interdependencies and achieves the good classification accuracy with a limited number of labeled samples

    A method of insect recognition based on spectrogram

    Get PDF
    A novel approach to insect recognition is presented in this paper. The difference between the proposed method with traditional methods is that it starts from the perspective of image and combines voice processing algorithms with image processing algorithms. The classification is done based on voice activity detection (VAD) and spectrogram. We show, by means of example that this approach can recognize different insects correctly. However, despite the potential of correct recognition, further justification of the reliability of the method need to be provided by a larger scale of experiments. Hence, some improvements will be proposed latterly

    A robust sparse representation model for hyperspectral image classification

    Get PDF
    Sparse representation has been extensively investigated for hyperspectral image (HSI) classification and led to substantial improvements in the performance over the traditional methods, such as support vector machine (SVM). However, the existing sparsity-based classification methods typically assume Gaussian noise, neglecting the fact that HSIs are often corrupted by different types of noise in practice. In this paper, we develop a robust classification model that admits realistic mixed noise, which includes Gaussian noise and sparse noise. We combine a model for mixed noise with a prior on the representation coefficients of input data within a unified framework, which produces three kinds of robust classification methods based on sparse representation classification (SRC), joint SRC and joint SRC on a super-pixels level. Experimental results on simulated and real data demonstrate the effectiveness of the proposed method and clear benefits from the introduced mixed-noise model

    A voice activity detection algorithm with sub-band detection based on time-frequency characteristics of mandarin

    Get PDF
    Voice activity detection algorithms are widely used in the areas of voice compression, speech synthesis, speech recognition, speech enhancement, and etc. In this paper, an efficient voice activity detection algorithm with sub-band detection based on time-frequency characteristics of mandarin is proposed. The proposed sub-band detection consists of two parts: crosswise detection and lengthwise detection. Energy detection and pitch detection are in the range of considerations. For a better performance, double-threshold criterion is used to reduce the misjudgment rate of the detection. Performance evaluation is based on six noise environments with different SNRs. Experiment results indicate that the proposed algorithm can detect the area of voice effectively in non-stationary environment and low SNR environment and has the potential to progress
    corecore