260 research outputs found

    Unified Segment-to-Segment Framework for Simultaneous Sequence Generation

    Full text link
    Simultaneous sequence generation is a pivotal task for real-time scenarios, such as streaming speech recognition, simultaneous machine translation and simultaneous speech translation, where the target sequence is generated while receiving the source sequence. The crux of achieving high-quality generation with low latency lies in identifying the optimal moments for generating, accomplished by learning a mapping between the source and target sequences. However, existing methods often rely on task-specific heuristics for different sequence types, limiting the model's capacity to adaptively learn the source-target mapping and hindering the exploration of multi-task learning for various simultaneous tasks. In this paper, we propose a unified segment-to-segment framework (Seg2Seg) for simultaneous sequence generation, which learns the mapping in an adaptive and unified manner. During the process of simultaneous generation, the model alternates between waiting for a source segment and generating a target segment, making the segment serve as the natural bridge between the source and target. To accomplish this, Seg2Seg introduces a latent segment as the pivot between source to target and explores all potential source-target mappings via the proposed expectation training, thereby learning the optimal moments for generating. Experiments on multiple simultaneous generation tasks demonstrate that Seg2Seg achieves state-of-the-art performance and exhibits better generality across various tasks.Comment: Accepted at NeurIPS 202

    Robust Bandit Learning with Imperfect Context

    Full text link
    A standard assumption in contextual multi-arm bandit is that the true context is perfectly known before arm selection. Nonetheless, in many practical applications (e.g., cloud resource management), prior to arm selection, the context information can only be acquired by prediction subject to errors or adversarial modification. In this paper, we study a contextual bandit setting in which only imperfect context is available for arm selection while the true context is revealed at the end of each round. We propose two robust arm selection algorithms: MaxMinUCB (Maximize Minimum UCB) which maximizes the worst-case reward, and MinWD (Minimize Worst-case Degradation) which minimizes the worst-case regret. Importantly, we analyze the robustness of MaxMinUCB and MinWD by deriving both regret and reward bounds compared to an oracle that knows the true context. Our results show that as time goes on, MaxMinUCB and MinWD both perform as asymptotically well as their optimal counterparts that know the reward function. Finally, we apply MaxMinUCB and MinWD to online edge datacenter selection, and run synthetic simulations to validate our theoretical analysis

    End-to-End Simultaneous Speech Translation with Differentiable Segmentation

    Full text link
    End-to-end simultaneous speech translation (SimulST) outputs translation while receiving the streaming speech inputs (a.k.a. streaming speech translation), and hence needs to segment the speech inputs and then translate based on the current received speech. However, segmenting the speech inputs at unfavorable moments can disrupt the acoustic integrity and adversely affect the performance of the translation model. Therefore, learning to segment the speech inputs at those moments that are beneficial for the translation model to produce high-quality translation is the key to SimulST. Existing SimulST methods, either using the fixed-length segmentation or external segmentation model, always separate segmentation from the underlying translation model, where the gap results in segmentation outcomes that are not necessarily beneficial for the translation process. In this paper, we propose Differentiable Segmentation (DiSeg) for SimulST to directly learn segmentation from the underlying translation model. DiSeg turns hard segmentation into differentiable through the proposed expectation training, enabling it to be jointly trained with the translation model and thereby learn translation-beneficial segmentation. Experimental results demonstrate that DiSeg achieves state-of-the-art performance and exhibits superior segmentation capability.Comment: Accepted at ACL 2023 finding

    Rural Land Property Right System of China: Defects and Solutions

    Get PDF
    The innovations of the rural land property right system have the important meaning to Chinese agricultural and rural development. At the present stage, the rural land property right system of China have such problems as the unclear rural land property right subject, the incomplete rural land property right object, the uneven urban-rural land development right as well as the imperfect land property right management system. In the next stage of the system reform process of China, the innovation problem of the rural land property right system should be fully emphasized, and the related measures should be actively taken to perfect the rural land property right system, including clarifying the rural land property right subject, propelling the real right tendency of the rural land contractual management right, setting up the urban-rural unified market of land for construction, along with deepening carrying out the work of confirming the rural land property right and issuing the property right certificates

    Learning for Edge-Weighted Online Bipartite Matching with Robustness Guarantees

    Full text link
    Many problems, such as online ad display, can be formulated as online bipartite matching. The crucial challenge lies in the nature of sequentially-revealed online item information, based on which we make irreversible matching decisions at each step. While numerous expert online algorithms have been proposed with bounded worst-case competitive ratios, they may not offer satisfactory performance in average cases. On the other hand, reinforcement learning (RL) has been applied to improve the average performance, but it lacks robustness and can perform arbitrarily poorly. In this paper, we propose a novel RL-based approach to edge-weighted online bipartite matching with robustness guarantees (LOMAR), achieving both good average-case and worst-case performance. The key novelty of LOMAR is a new online switching operation which, based on a judicious condition to hedge against future uncertainties, decides whether to follow the expert's decision or the RL decision for each online item. We prove that for any ρ[0,1]\rho\in[0,1], LOMAR is ρ\rho-competitive against any given expert online algorithm. To improve the average performance, we train the RL policy by explicitly considering the online switching operation. Finally, we run empirical experiments to demonstrate the advantages of LOMAR compared to existing baselines. Our code is available at: https://github.com/Ren-Research/LOMARComment: Accepted by ICML 202

    Glancing Future for Simultaneous Machine Translation

    Full text link
    Simultaneous machine translation (SiMT) outputs translation while reading the source sentence. Unlike conventional sequence-to-sequence (seq2seq) training, existing SiMT methods adopt the prefix-to-prefix (prefix2prefix) training, where the model predicts target tokens based on partial source tokens. However, the prefix2prefix training diminishes the ability of the model to capture global information and introduces forced predictions due to the absence of essential source information. Consequently, it is crucial to bridge the gap between the prefix2prefix training and seq2seq training to enhance the translation capability of the SiMT model. In this paper, we propose a novel method that glances future in curriculum learning to achieve the transition from the seq2seq training to prefix2prefix training. Specifically, we gradually reduce the available source information from the whole sentence to the prefix corresponding to that latency. Our method is applicable to a wide range of SiMT methods and experiments demonstrate that our method outperforms strong baselines.Comment: 5 pages, 4 figure, Submitted to ICASSP 202

    Decoder-only Streaming Transformer for Simultaneous Translation

    Full text link
    Simultaneous Machine Translation (SiMT) generates translation while reading source tokens, essentially producing the target prefix based on the source prefix. To achieve good performance, it leverages the relationship between source and target prefixes to exact a policy to guide the generation of translations. Although existing SiMT methods primarily focus on the Encoder-Decoder architecture, we explore the potential of Decoder-only architecture, owing to its superior performance in various tasks and its inherent compatibility with SiMT. However, directly applying the Decoder-only architecture to SiMT poses challenges in terms of training and inference. To alleviate the above problems, we propose the first Decoder-only SiMT model, named Decoder-only Streaming Transformer (DST). Specifically, DST separately encodes the positions of the source and target prefixes, ensuring that the position of the target prefix remains unaffected by the expansion of the source prefix. Furthermore, we propose a Streaming Self-Attention (SSA) mechanism tailored for the Decoder-only architecture. It is capable of obtaining translation policy by assessing the sufficiency of input source information and integrating with the soft-attention mechanism to generate translations. Experiments demonstrate that our approach achieves state-of-the-art performance on three translation tasks.Comment: Accepted to ACL 2024. 14 pages, 10 Tables, 5 Figure
    corecore