283 research outputs found
Direct recordings of grid-like neuronal activity in human spatial navigation
Grid cells in the entorhinal cortex appear to represent spatial location via a triangular coordinate system. Such cells, which have been identified in rats, bats and monkeys, are believed to support a wide range of spatial behaviors. Recording neuronal activity from neurosurgical patients performing a virtual-navigation task, we identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes
Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains
Background: Saccharomyces cerevisiae (Baker’s yeast) is found in diverse ecological niches and is characterized by
high adaptive potential under challenging environments. In spite of recent advances on the study of yeast
genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto
this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and
laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and
stationary growth phases.
Results: Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose
metabolism and in the stress response elicited during fermentation were among the most variable. This gene
expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower
average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and
sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression
among the environmental isolates.
Conclusions: Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol
accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results
support previous data showing that gene expression variability is a source of phenotypic diversity among closely
related organisms.Fundação para a Ciência e TecnologiaThe authors wish to thank Adega Cooperativa da Bairrada, Cantanhede,
Portugal, for providing the commercial strains
Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV
Peer reviewe
Associating Genes and Protein Complexes with Disease via Network Propagation
A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting) to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE's predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation
Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV
Peer reviewe
Unsupervised Analysis of Classical Biomedical Markers: Robustness and Medical Relevance of Patient Clustering Using Bioinformatics Tools
Motivation: It has been proposed that clustering clinical markers, such as blood test results, can be used to stratify patients. However, the robustness of clusters formed with this approach to data pre-processing and clustering algorithm choices has not been evaluated, nor has clustering reproducibility. Here, we made use of the NHANES survey to compare clusters generated with various combinations of pre-processing and clustering algorithms, and tested their reproducibility in two separate samples. Method: Values of 44 biomarkers and 19 health/life style traits were extracted from the National Health and Nutrition Examination Survey (NHANES). The 1999–2002 survey was used for training, while data from the 2003–2006 survey was tested as a validation set. Twelve combinations of pre-processing and clustering algorithms were applied to the training set. The quality of the resulting clusters was evaluated both by considering their properties and by comparative enrichment analysis. Cluster assignments were projected to the validation set (using an artificial neural network) and enrichment in health/life style traits in the resulting clusters was compared to the clusters generated from the original training set. Results: The clusters obtained with different pre-processing and clustering combinations differed both in terms of cluster quality measures and in terms of reproducibility of enrichment with health/life style properties. Z-score normalization, for example, dramatically improved cluster quality and enrichments, as compared to unprocessed data, regardless of the clustering algorithm used. Clustering diabetes patients revealed a group of patients enriched with retinopathies. This coul
Jerarca: Efficient Analysis of Complex Networks Using Hierarchical Clustering
Background: How to extract useful information from complex biological networks is a major goal in many fields, especially in genomics and proteomics. We have shown in several works that iterative hierarchical clustering, as implemented in the UVCluster program, is a powerful tool to analyze many of those networks. However, the amount of computation time required to perform UVCluster analyses imposed significant limitations to its use. Methodology/Principal Findings: We describe the suite Jerarca, designed to efficiently convert networks of interacting units into dendrograms by means of iterative hierarchical clustering. Jerarca is divided into three main sections. First, weighted distances among units are computed using up to three different approaches: a more efficient version of UVCluster and two new, related algorithms called RCluster and SCluster. Second, Jerarca builds dendrograms based on those distances, using well-known phylogenetic algorithms, such as UPGMA or Neighbor-Joining. Finally, Jerarca provides optimal partitions of the trees using statistical criteria based on the distribution of intra- and intercluster connections. Outputs compatible with the phylogenetic software MEGA and the Cytoscape package are generated, allowing the results to be easily visualized. Conclusions/Significance: The four main advantages of Jerarca in respect to UVCluster are: 1) Improved speed of a novel UVCluster algorithm; 2) Additional, alternative strategies to perform iterative hierarchical clustering; 3) Automatic evaluatio
Local Network Topology in Human Protein Interaction Data Predicts Functional Association
The use of high-throughput techniques to generate large volumes of protein-protein interaction (PPI) data has increased the need for methods that systematically and automatically suggest functional relationships among proteins. In a yeast PPI network, previous work has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional association. In this study we improved the prediction scheme by developing a new algorithm and applied it on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting function-associated protein pairs. We used the annotations of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as benchmarks to compare and evaluate the function relevance. The application of our algorithms to human PPI data yielded 4,233 significant functional associations among 1,754 proteins. Further functional comparisons between them allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made functional inferences from detailed analysis on one subcluster highly enriched in the TGF-β signaling pathway (P<10−50). Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotation in this post-genomic era
- …
