1,362 research outputs found

    Mechanically induced current and quantum evaporation from Luttinger liquids

    Full text link
    We investigate transport through a tunnelling junction between an uncorrelated metallic lead and a Luttinger liquid when the latter is subjected to a time dependent perturbation. The tunnelling current as well as the electron energy distribution function are found to be strongly affected by the perturbation due to generation of harmonics in the density oscillations. Using a semiconducting lead instead of a metallic one results in electrons being injected into the lead even without applied voltage. Some applications to carbon nanotubes are discussed.Comment: 7 pages, 2 figures (eps files

    How backscattering off a point impurity can enhance the current and make the conductance greater than e^2/h per channel

    Full text link
    It is well known that while forward scattering has no effect on the conductance of one-dimensional systems, backscattering off a static impurity suppresses the current. We study the effect of a time-dependent point impurity on the conductance of a one-channel quantum wire. At strong repulsive interaction (Luttinger liquid parameter g<1/2), backscattering renders the linear conductance greater than its value e^2/h in the absence of the impurity. A possible experimental realization of our model is a constricted quantum wire or a constricted Hall bar at fractional filling factors nu=1/(2n+1) with a time-dependent voltage at the constriction.Comment: 7 pages, 2 figure

    Magnetic moments of the low-lying JP=1/2J^P=\,1/2^-, 3/23/2^- Λ\Lambda resonances within the framework of the chiral quark model

    Full text link
    The magnetic moments of the low-lying spin-parity JP=J^P= 1/21/2^-, 3/23/2^- Λ\Lambda resonances, like, for example, Λ(1405)\Lambda(1405) 1/21/2^-, Λ(1520)\Lambda(1520) 3/23/2^-, as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization

    Educating Health Professionals about Disability: A Review of Interventions

    Get PDF
    Health professionals need to understand the human rights and health needs of disabled people. This review of evidence on interventions demonstrates that a range of often innovative approaches have been trialled. Lectures by faculty are less effective in changing attitudes than contact with disabled people themselves. Existing examples of good practice need to be scaled up, and better and more long-term evaluations of impact are required

    The structure of superheavy elements newly discovered in the reaction of 86^{86}Kr with 208^{208}Pb

    Get PDF
    The structure of superheavy elements newly discovered in the 208^{208}Pb(86^{86}Kr,n) reaction at Berkeley is systematically studied in the Relativistic Mean Field (RMF) approach. It is shown that various usually employed RMF forces, which give fair description of normal stable nuclei, give quite different predictions for superheavy elements. Among the effective forces we tested, TM1 is found to be the good candidate to describe superheavy elements. The binding energies of the 293^{293}118 nucleus and its α\alpha-decay daughter nuclei obtained using TM1 agree with those of FRDM within 2 MeV. Similar conclusion that TM1 is the good interaction is also drawn from the calculated binding energies for Pb isotopes with the Relativistic Continuum Hartree Bogoliubov (RCHB) theory. Using the pairing gaps obtained from RCHB, RMF calculations with pairing and deformation are carried out for the structure of superheavy elements. The binding energy, shape, single particle levels, and the Q values of the α\alpha-decay QαQ_{\alpha} are discussed, and it is shown that both pairing correlation and deformation are essential to properly understand the structure of superheavy elements. A good agreement is obtained with experimental data on QαQ_{\alpha}. %Especially, the atomic number %dependence of QαQ_{\alpha} %seems to match with the experimental observationComment: 19 pages, 5 figure

    Testing one-body density functionals on a solvable model

    Full text link
    There are several physically motivated density matrix functionals in the literature, built from the knowledge of the natural orbitals and the occupation numbers of the one-body reduced density matrix. With the help of the equivalent phase-space formalism, we thoroughly test some of the most popular of those functionals on a completely solvable model.Comment: Latex, 16 pages, 4 figure

    A Green's function approach to transmission of massless Dirac fermions in graphene through an array of random scatterers

    Full text link
    We consider the transmission of massless Dirac fermions through an array of short range scatterers which are modeled as randomly positioned δ\delta- function like potentials along the x-axis. We particularly discuss the interplay between disorder-induced localization that is the hallmark of a non-relativistic system and two important properties of such massless Dirac fermions, namely, complete transmission at normal incidence and periodic dependence of transmission coefficient on the strength of the barrier that leads to a periodic resonant transmission. This leads to two different types of conductance behavior as a function of the system size at the resonant and the off-resonance strengths of the delta function potential. We explain this behavior of the conductance in terms of the transmission through a pair of such barriers using a Green's function based approach. The method helps to understand such disordered transport in terms of well known optical phenomena such as Fabry Perot resonances.Comment: 22 double spaced single column pages. 15 .eps figure

    Self-similar solutions of viscous and resistive ADAFs with thermal conduction

    Full text link
    We have studied the effects of thermal conduction on the structure of viscous and resistive advection-dominated accretion flows (ADAFs). The importance of thermal conduction on hot accretion flow is confirmed by observations of hot gas that surrounds Sgr A^* and a few other nearby galactic nuclei. In this research, thermal conduction is studied by a saturated form of it, as is appropriated for weakly-collisional systems. It is assumed the viscosity and the magnetic diffusivity are due to turbulence and dissipation in the flow. The viscosity also is due to angular momentum transport. Here, the magnetic diffusivity and the kinematic viscosity are not constant and vary by position and α\alpha-prescription is used for them. The govern equations on system have been solved by the steady self-similar method. The solutions show the radial velocity is highly subsonic and the rotational velocity behaves sub-Keplerian. The rotational velocity for a specific value of the thermal conduction coefficient becomes zero. This amount of conductivity strongly depends on magnetic pressure fraction, magnetic Prandtl number, and viscosity parameter. Comparison of energy transport by thermal conduction with the other energy mechanisms implies that thermal conduction can be a significant energy mechanism in resistive and magnetized ADAFs. This property is confirmed by non-ideal magnetohydrodynamics (MHD) simulations.Comment: 8 pages, 5 figures, accepted by Ap&S

    Static quantities of the W boson in the SU_L(3) X U_X(1) model with right-handed neutrinos

    Full text link
    The static electromagnetic properties of the WW boson, Δκ\Delta \kappa and ΔQ\Delta Q, are calculated in the SU_L(3)} \times U_X(1) model with right-handed neutrinos. The new contributions from this model arise from the gauge and scalar sectors. In the gauge sector there is a new contribution from a complex neutral gauge boson Y0Y^0 and a singly-charged gauge boson Y±Y^\pm. The mass of these gauge bosons, called bileptons, is expected to be in the range of a few hundreds of GeV according to the current bounds from experimental data. If the bilepton masses are of the order of 200 GeV, the size of their contribution is similar to that obtained in other weakly coupled theories. However the contributions to both ΔQ\Delta Q and Δκ\Delta \kappa are negligible for very heavy or degenerate bileptons. As for the scalar sector, an scenario is examined in which the contribution to the WW form factors is identical to that of a two-Higgs-doublet model. It is found that this sector would not give large corrections to Δκ\Delta \kappa and ΔQ\Delta Q.Comment: New material included. Final version to apppear in Physical Review
    corecore