1,362 research outputs found
Mechanically induced current and quantum evaporation from Luttinger liquids
We investigate transport through a tunnelling junction between an
uncorrelated metallic lead and a Luttinger liquid when the latter is subjected
to a time dependent perturbation. The tunnelling current as well as the
electron energy distribution function are found to be strongly affected by the
perturbation due to generation of harmonics in the density oscillations. Using
a semiconducting lead instead of a metallic one results in electrons being
injected into the lead even without applied voltage. Some applications to
carbon nanotubes are discussed.Comment: 7 pages, 2 figures (eps files
Enhancing and stabilizing productivity of rice-based cropping system in salt-affected areas of Indo-Gangetic region through improved germplasm and management strategies
How backscattering off a point impurity can enhance the current and make the conductance greater than e^2/h per channel
It is well known that while forward scattering has no effect on the
conductance of one-dimensional systems, backscattering off a static impurity
suppresses the current. We study the effect of a time-dependent point impurity
on the conductance of a one-channel quantum wire. At strong repulsive
interaction (Luttinger liquid parameter g<1/2), backscattering renders the
linear conductance greater than its value e^2/h in the absence of the impurity.
A possible experimental realization of our model is a constricted quantum wire
or a constricted Hall bar at fractional filling factors nu=1/(2n+1) with a
time-dependent voltage at the constriction.Comment: 7 pages, 2 figure
Magnetic moments of the low-lying , resonances within the framework of the chiral quark model
The magnetic moments of the low-lying spin-parity ,
resonances, like, for example, ,
, as well as their transition magnetic moments, are
calculated using the chiral quark model. The results found are compared with
those obtained from the nonrelativistic quark model and those of unitary chiral
theories, where some of these states are generated through the dynamics of two
hadron coupled channels and their unitarization
Educating Health Professionals about Disability: A Review of Interventions
Health professionals need to understand the human rights and health needs of disabled people. This review of evidence on interventions demonstrates that a range of often innovative approaches have been trialled. Lectures by faculty are less effective in changing attitudes than contact with disabled people themselves. Existing examples of good practice need to be scaled up, and better and more long-term evaluations of impact are required
The structure of superheavy elements newly discovered in the reaction of Kr with Pb
The structure of superheavy elements newly discovered in the
Pb(Kr,n) reaction at Berkeley is systematically studied in the
Relativistic Mean Field (RMF) approach. It is shown that various usually
employed RMF forces, which give fair description of normal stable nuclei, give
quite different predictions for superheavy elements. Among the effective forces
we tested, TM1 is found to be the good candidate to describe superheavy
elements. The binding energies of the 118 nucleus and its
decay daughter nuclei obtained using TM1 agree with those of FRDM
within 2 MeV. Similar conclusion that TM1 is the good interaction is also drawn
from the calculated binding energies for Pb isotopes with the Relativistic
Continuum Hartree Bogoliubov (RCHB) theory. Using the pairing gaps obtained
from RCHB, RMF calculations with pairing and deformation are carried out for
the structure of superheavy elements. The binding energy, shape, single
particle levels, and the Q values of the decay are
discussed, and it is shown that both pairing correlation and deformation are
essential to properly understand the structure of superheavy elements. A good
agreement is obtained with experimental data on . %Especially, the
atomic number %dependence of %seems to match with the experimental
observationComment: 19 pages, 5 figure
Testing one-body density functionals on a solvable model
There are several physically motivated density matrix functionals in the
literature, built from the knowledge of the natural orbitals and the occupation
numbers of the one-body reduced density matrix. With the help of the equivalent
phase-space formalism, we thoroughly test some of the most popular of those
functionals on a completely solvable model.Comment: Latex, 16 pages, 4 figure
A Green's function approach to transmission of massless Dirac fermions in graphene through an array of random scatterers
We consider the transmission of massless Dirac fermions through an array of
short range scatterers which are modeled as randomly positioned -
function like potentials along the x-axis. We particularly discuss the
interplay between disorder-induced localization that is the hallmark of a
non-relativistic system and two important properties of such massless Dirac
fermions, namely, complete transmission at normal incidence and periodic
dependence of transmission coefficient on the strength of the barrier that
leads to a periodic resonant transmission. This leads to two different types of
conductance behavior as a function of the system size at the resonant and the
off-resonance strengths of the delta function potential. We explain this
behavior of the conductance in terms of the transmission through a pair of such
barriers using a Green's function based approach. The method helps to
understand such disordered transport in terms of well known optical phenomena
such as Fabry Perot resonances.Comment: 22 double spaced single column pages. 15 .eps figure
Self-similar solutions of viscous and resistive ADAFs with thermal conduction
We have studied the effects of thermal conduction on the structure of viscous
and resistive advection-dominated accretion flows (ADAFs). The importance of
thermal conduction on hot accretion flow is confirmed by observations of hot
gas that surrounds Sgr A and a few other nearby galactic nuclei. In this
research, thermal conduction is studied by a saturated form of it, as is
appropriated for weakly-collisional systems. It is assumed the viscosity and
the magnetic diffusivity are due to turbulence and dissipation in the flow. The
viscosity also is due to angular momentum transport. Here, the magnetic
diffusivity and the kinematic viscosity are not constant and vary by position
and -prescription is used for them. The govern equations on system have
been solved by the steady self-similar method. The solutions show the radial
velocity is highly subsonic and the rotational velocity behaves sub-Keplerian.
The rotational velocity for a specific value of the thermal conduction
coefficient becomes zero. This amount of conductivity strongly depends on
magnetic pressure fraction, magnetic Prandtl number, and viscosity parameter.
Comparison of energy transport by thermal conduction with the other energy
mechanisms implies that thermal conduction can be a significant energy
mechanism in resistive and magnetized ADAFs. This property is confirmed by
non-ideal magnetohydrodynamics (MHD) simulations.Comment: 8 pages, 5 figures, accepted by Ap&S
Static quantities of the W boson in the SU_L(3) X U_X(1) model with right-handed neutrinos
The static electromagnetic properties of the boson, and
, are calculated in the SU_L(3)} \times U_X(1) model with
right-handed neutrinos. The new contributions from this model arise from the
gauge and scalar sectors. In the gauge sector there is a new contribution from
a complex neutral gauge boson and a singly-charged gauge boson .
The mass of these gauge bosons, called bileptons, is expected to be in the
range of a few hundreds of GeV according to the current bounds from
experimental data. If the bilepton masses are of the order of 200 GeV, the size
of their contribution is similar to that obtained in other weakly coupled
theories. However the contributions to both and are
negligible for very heavy or degenerate bileptons. As for the scalar sector, an
scenario is examined in which the contribution to the form factors is
identical to that of a two-Higgs-doublet model. It is found that this sector
would not give large corrections to and .Comment: New material included. Final version to apppear in Physical Review
- …
