94 research outputs found
Recommended from our members
Cost effectiveness analysis of Year 2 of an elementary school-located influenza vaccination program-Results from a randomized controlled trial.
BackgroundSchool-located vaccination against influenza (SLV-I) has the potential to improve current suboptimal influenza immunization coverage for U.S. school-aged children. However, little is known about SLV-I's cost-effectiveness. The objective of this study is to establish the cost-effectiveness of SLV-I based on a two-year community-based randomized controlled trial (Year 1: 2009-2010 vaccination season, an unusual H1N1 pandemic influenza season, and Year 2: 2010-2011, a more typical influenza season).MethodsWe performed a cost-effectiveness analysis on a two-year randomized controlled trial of a Western New York SLV-I program. SLV-I clinics were offered in 21 intervention elementary schools (Year 1 n = 9,027; Year 2 n = 9,145 children) with standard-of-care (no SLV-I) in control schools (Year 1 n = 4,534 (10 schools); Year 2 n = 4,796 children (11 schools)). We estimated the cost-per-vaccinated child, by dividing the incremental cost of the intervention by the incremental effectiveness (i.e., the number of additionally vaccinated students in intervention schools compared to control schools).ResultsIn Years 1 and 2, respectively, the effectiveness measure (proportion of children vaccinated) was 11.2 and 12.0 percentage points higher in intervention (40.7 % and 40.4 %) than control schools. In year 2, the cost-per-vaccinated child excluding vaccine purchase () consisted of three component costs: (A) the school costs (32.33); and (C) the vendor costs excluding vaccine purchase (59.73 (Year 1) and 39.54). However, taking indirect costs (e.g., averted parental costs to visit medical practices) into account, vaccination was less costly in SLV-I (24.07 in Year 2) than in medical practices.ConclusionsOur two-year trial's findings reinforced the evidence to support SLV-I as a potentially favorable system to increase childhood influenza vaccination rates in a cost-efficient way. Increased efficiencies in SLV-I are needed for a sustainable and scalable SLV-I program
Recommended from our members
Cost effectiveness of school-located influenza vaccination programs for elementary and secondary school children.
BackgroundStudies have noted variations in the cost-effectiveness of school-located influenza vaccination (SLIV), but little is known about how SLIV's cost-effectiveness may vary by targeted age group (e.g., elementary or secondary school students), or vaccine consent process (paper-based or web-based). Further, SLIV's cost-effectiveness may be impacted by its spillover effect on practice-based vaccination; prior studies have not addressed this issue.MethodsWe performed a cost-effectiveness analysis on two SLIV programs in upstate New York in 2015-2016: (a) elementary school SLIV using a stepped wedge design with schools as clusters (24 suburban and 18 urban schools) and (b) secondary school SLIV using a cluster randomized trial (16 suburban and 4 urban schools). The cost-per-additionally-vaccinated child (i.e., incremental cost-effectiveness ratio (ICER)) was estimated by dividing the incremental SLIV intervention cost by the incremental effectiveness (i.e., the additional number of vaccinated students in intervention schools compared to control schools). We performed deterministic analyses, one-way sensitivity analyses, and probabilistic analyses.ResultsThe overall effectiveness measure (proportion of children vaccinated) was 5.7 and 5.5 percentage points higher, respectively, in intervention elementary (52.8%) and secondary schools (48.2%) than grade-matched control schools. SLIV programs vaccinated a small proportion of children in intervention elementary (5.2%) and secondary schools (2.5%). In elementary and secondary schools, the ICER excluding vaccine purchase was 86.51 per-additionally-vaccinated-child, respectively. When additionally accounting for observed spillover impact on practice-based vaccination, the ICER decreased to 53.40). These estimates were higher than the published practice-based vaccination cost (median = 45.48). Also, these estimates were higher than our 2009-2011 urban SLIV program mean costs (12.97 per-additionally-vaccinated-child) and higher project coordination costs in 2015-2016. One-way sensitivity analyses showed that ICER estimates were most sensitive to the SLIV effectiveness.ConclusionsSLIV raises vaccination rates and may increase practice-based vaccination in primary care practices. While these SLIV programs are effective, to be as cost-effective as practice-based vaccination our SLIV programs would need to vaccinate more students and/or lower the costs for consent systems and project coordination.Trial registrationClinicalTrials.gov NCT02227186 (August 25, 2014), updated NCT03137667 (May 2, 2017)
Cost effectiveness analysis of Year 2 of an elementary school-located influenza vaccination program–Results from a randomized controlled trial
BACKGROUND: School-located vaccination against influenza (SLV-I) has the potential to improve current suboptimal influenza immunization coverage for U.S. school-aged children. However, little is known about SLV-I’s cost-effectiveness. The objective of this study is to establish the cost-effectiveness of SLV-I based on a two-year community-based randomized controlled trial (Year 1: 2009–2010 vaccination season, an unusual H1N1 pandemic influenza season, and Year 2: 2010–2011, a more typical influenza season). METHODS: We performed a cost-effectiveness analysis on a two-year randomized controlled trial of a Western New York SLV-I program. SLV-I clinics were offered in 21 intervention elementary schools (Year 1 n = 9,027; Year 2 n = 9,145 children) with standard-of-care (no SLV-I) in control schools (Year 1 n = 4,534 (10 schools); Year 2 n = 4,796 children (11 schools)). We estimated the cost-per-vaccinated child, by dividing the incremental cost of the intervention by the incremental effectiveness (i.e., the number of additionally vaccinated students in intervention schools compared to control schools). RESULTS: In Years 1 and 2, respectively, the effectiveness measure (proportion of children vaccinated) was 11.2 and 12.0 percentage points higher in intervention (40.7 % and 40.4 %) than control schools. In year 2, the cost-per-vaccinated child excluding vaccine purchase () consisted of three component costs: (A) the school costs (32.33); and (C) the vendor costs excluding vaccine purchase (59.73 (Year 1) and 39.54). However, taking indirect costs (e.g., averted parental costs to visit medical practices) into account, vaccination was less costly in SLV-I (24.07 in Year 2) than in medical practices. CONCLUSIONS: Our two-year trial’s findings reinforced the evidence to support SLV-I as a potentially favorable system to increase childhood influenza vaccination rates in a cost-efficient way. Increased efficiencies in SLV-I are needed for a sustainable and scalable SLV-I program
- …
