2,981 research outputs found
Identification of a non-mammalian leptin-like gene:characterization and expression in the tiger salamander (Ambystoma tigrinum)
Leptin is well established as a multifunctional cytokine in mammals. However, little is known about the evolution of the leptin gene in other vertebrates. A recently published set of ESTs from the tiger salamander (Ambystoma tigrinum) contains a sequence sharing 56% nucleotide sequence identity with the human leptin cDNA. To confirm that the EST is naturally expressed in the salamander, a 409 bp cDNA was amplified by RT-PCR of salamander testis and stomach mRNAs. The coding sequence of the cDNA is predicted to encode 169 amino acids, and the mature peptide to consist of 146 residues, as in mammals. Although the overall amino acid identity with mammalian leptins is only 29%, the salamander and mammalian peptides share common structural features. An intron was identified between coding exons providing evidence that the sequence is present in the salamander genome. Phylogenetic analysis showed a rate of molecular divergence consistent with the accepted view of vertebrate evolution. The pattern of tissue expression of the leptin-like cDNA differed between metamorphosed adult individuals of different sizes suggesting possible developmental regulation. Expression was most prominent in the skin and testis, but was also detected in tissues in which leptin mRNA is present in mammals, including the fat body, stomach, and muscle. The characterization of a salamander leptin-like gene provides a basis for understanding how the structure and functions of leptin have altered during the evolution of tetrapod vertebrates
Maintaining a Local Data Integration System in Support of Weather Forecast Operations
Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) at Johnson Space Center in Houston, TX have used a local data integration system (LDIS) as part of their forecast and warning operations. The original LDIS was developed by NASA's Applied Meteorology Unit (AMU; Bauman et ai, 2004) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather feature
Analysis of the March 30, 2011 Hail Event at Shuttle Launch Pad 39A
The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA KSC Physics Lab and the KSC Engineering Services Contract (ESC) Applied Technology Lab, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain, Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University have been instrumental in validation testing using duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle, as shown in Figure 1, was first deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusually intense (for Florida standards) hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a vehicle is on the launch pad, with special attention after any storm suspected of containing hail. If no hail is recorded by the HMS, the vehicle and pad inspection team has no need to conduct a thorough inspection of the vehicle immediately following a storm. On the afternoon of July 13, 2007, hail on the ground was reported by observers at the Vertical Assembly Building (VAB) and Launch Control Center (LCC), about three miles west of Pad 39A, as well as at several other locations at KSC. The HMS showed no impact detections, indicating that the shuttle had not been damaged by any of the numerous hail events which occurred on that day
Hail Disrometer Array for Launch Systems Support
Prior to launch, the space shuttle might be described as a very large thermos bottle containing substantial quantities of cryogenic fuels. Because thermal insulation is a critical design requirement, the external wall of the launch vehicle fuel tank is covered with an insulating foam layer. This foam is fragile and can be damaged by very minor impacts, such as that from small- to medium-size hail, which may go unnoticed. In May 1999, hail damage to the top of the External Tank (ET) of STS-96 required a rollback from the launch pad to the Vehicle Assembly Building (VAB) for repair of the insulating foam. Because of the potential for hail damage to the ET while exposed to the weather, a vigilant hail sentry system using impact transducers was developed as a hail damage warning system and to record and quantify hail events. The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA and University Affiliated Spaceport Technology Development Contract (USTDC) Physics Labs, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain. Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University were and continue to be active in testing duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle (see Figure 1), was deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusual hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a vehicle is on the launch pad, with special attention after any storm suspected of containing hail. If no hail is recorded by the HMS, the vehicle and pad inspection team has no need to conduct a thorough inspection of the vehicle immediately following a storm. On the afternoon of July 13, 2007, hail on the ground was reported by observers at the VAB, about three miles west of Pad 39A, as well as at several other locations around Kennedy Space Center. The HMS showed no impact detections, indicating that the shuttle had not been damaged by any of the numerous hail events which occurred that day
Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System
In a previous task, the Applied Meteorology Unit (AMU) developed spatial and temporal climatologies of lightning occurrence based on eight atmospheric flow regimes. The AMU created climatological, or composite, soundings of wind speed and direction, temperature, and dew point temperature at four rawinsonde observation stations at Jacksonville, Tampa, Miami, and Cape Canaveral Air Force Station, for each of the eight flow regimes. The composite soundings were delivered to the National Weather Service (NWS) Melbourne (MLB) office for display using the National version of the Skew-T Hodograph analysis and Research Program (NSHARP) software program. The NWS MLB requested the AMU make the composite soundings available for display in the Advanced Weather Interactive Processing System (AWIPS), so they could be overlaid on current observed soundings. This will allow the forecasters to compare the current state of the atmosphere with climatology. This presentation describes how the AMU converted the composite soundings from NSHARP Archive format to Network Common Data Form (NetCDF) format, so that the soundings could be displayed in AWl PS. The NetCDF is a set of data formats, programming interfaces, and software libraries used to read and write scientific data files. In AWIPS, each meteorological data type, such as soundings or surface observations, has a unique NetCDF format. Each format is described by a NetCDF template file. Although NetCDF files are in binary format, they can be converted to a text format called network Common data form Description Language (CDL). A software utility called ncgen is used to create a NetCDF file from a CDL file, while the ncdump utility is used to create a CDL file from a NetCDF file. An AWIPS receives soundings in Binary Universal Form for the Representation of Meteorological data (BUFR) format (http://dss.ucar.edu/docs/formats/bufr/), and then decodes them into NetCDF format. Only two sounding files are generated in AWIPS per day. One file contains all of the soundings received worldwide between 0000 UTC and 1200 UTC, and the other includes all soundings between 1200 UTC and 0000 UTC. In order to add the composite soundings into AWIPS, a procedure was created to configure, or localize, AWIPS. This involved modifying and creating several configuration text files. A unique fourcharacter site identifier was created for each of the 32 soundings so each could be viewed separately. The first three characters were based on the site identifier of the observed sounding, while the last character was based on the flow regime. While researching the localization process for soundings, the AMU discovered a method of archiving soundings so old soundings would not get purged automatically by AWl PS. This method could provide an alternative way of localizing AWl PS for composite soundings. In addition, this would allow forecasters to use archived soundings in AWIPS for case studies. A test sounding file in NetCDF format was written in order to verify the correct format for soundings in AWIPS. After the file was viewed successfully in AWIPS, the AMU wrote a software program in the Tool Command Language/Tool Kit (Tcl/Tk) language to convert the 32 composite soundings from NSHARP Archive to CDL format. The ncgen utility was then used to convert the CDL file to a NetCDF file. The NetCDF file could then be read and displayed in AWIPS
Configuring a Graphical User Interface for Managing Local HYSPLIT Model Runs Through AWIPS
Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files
Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications
The National Weather Service Forecast Office in Melbourne, FL (NWS MLB) is responsible for providing meteorological support to state and county emergency management agencies across East Central Florida in the event of incidents involving the significant release of harmful chemicals, radiation, and smoke from fires and/or toxic plumes into the atmosphere. NWS MLB uses the National Oceanic and Atmospheric Administration Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to provide trajectory, concentration, and deposition guidance during such events. Accurate and timely guidance is critical for decision makers charged with protecting the health and well-being of populations at risk. Information that can describe the geographic extent of areas possibly affected by a hazardous release, as well as to indicate locations of primary concern, offer better opportunity for prompt and decisive action. In addition, forecasters at the NWS Spaceflight Meteorology Group (SMG) have expressed interest in using the HYSPLIT model to assist with Weather Flight Rules during Space Shuttle landing operations. In particular, SMG would provide low and mid-level HYSPLIT trajectory forecasts for cumulus clouds associated with smoke plumes, and high-level trajectory forecasts for thunderstorm anvils. Another potential benefit for both NWS MLB and SMG is using the HYSPLIT model concentration and deposition guidance in fog situations
Transcranial direct current stimulation of the motor cortex in the treatment of chronic non-specific low back pain. A randomised, double-blind exploratory study
This exploratory study aimed to test the proof of principle that active anodal transcranial direct current stimulation (tDCS) applied to the motor cortex reduces pain significantly more than sham stimulation in a group of participants with chronic non-specific low back pain
Applied Meteorology Unit - Operational Contributions to Spaceport Canaveral
The Applied Meteorology Unit (AMU) provides technology development, evaluation and transition services to improve operational weather support to the Space Shuttle and the National Space Program. It is established under a Memorandum of Understanding among NASA, the Air Force and the National .Weather Service (NWS). The AMU is funded and managed by NASA and operated by ENSCO, Inc. through a competitively awarded NASA contract. The primary customers are the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS), FL; the Spaceflight Meteorology Group (SMG) at Johnson Space Center (JSC) in Houston, TX; and the NWS office in Melbourne, FL (NWS MLB). This paper will briefly review the AMU's history and describe the three processes through which its work is assigned. Since its inception in 1991 the AMU has completed 72 projects, all of which are listed at the end of this paper. At least one project that highlights each of the three tasking processes will be briefly reviewed. Some of the projects that have been especially beneficial to the space program will also be discussed in more detail, as will projects that developed significant new techniques or science in applied meteorology
- …
