45 research outputs found
Was the Devonian geomagnetic field dipolar or multipolar? Palaeointensity studies of Devonian igneous rocks from the Minusa Basin (Siberia) and the Kola Peninsula dykes, Russia
Defining variations in the behaviour of the geomagnetic field through geological time is critical to understanding the dynamics of Earth's core and its response to mantle convection and planetary evolution. Furthermore, the question of whether the axial dipole dominance of the recent palaeomagnetic field persists through the whole of Earth's history is fundamental to determining the reliability of palaeogeographic reconstructions and the efficacy of the magnetosphere in shielding Earth from solar wind radiation. Previous palaeomagnetic directional studies have suggested that the palaeofield had a complex configuration in the Devonian period (419–359 Ma). Here we present new high-quality palaeointensity determinations from rocks aged between 408 and 375 Ma from the Minusa Basin (southern Siberia), and the Kola Peninsula that enable the first reliable investigation of the strength of the field during this enigmatic period. Palaeointensity experiments were performed using the thermal Thellier, microwave Thellier and Wilson methods on 165 specimens from 25 sites. Six out of eight successful sites from the Minusa Basin and all four successful sites from the Kola Peninsula produced extremely low palaeointensities (<10 μT). These findings challenge the uniformitarian view of the palaeomagnetic field: field intensities of nearly an order of magnitude lower than Neogene values (except during relatively rare geomagnetic excursions and reversals) together with the widespread appearance of strange directions found in the Devonian suggest that the Earth's field during this time may have had a dominantly multipolar geometry. A persistent, low intensity multipolar magnetic field and associated diminished magnetosphere would increase the impact of solar particles on the Earth's magnetosphere, ionosphere and atmosphere with potential major implications for Earth's climate and biosphere
Reversals in nature and the nature of reversals
The asymmetric shape of reversals of the Earth's magnetic field indicates a
possible connection with relaxation oscillations as they were early discussed
by van der Pol. A simple mean-field dynamo model with a spherically symmetric
coefficient is analysed with view on this similarity, and a comparison
of the time series and the phase space trajectories with those of paleomagnetic
measurements is carried out. For highly supercritical dynamos a very good
agreement with the data is achieved. Deviations of numerical reversal sequences
from Poisson statistics are analysed and compared with paleomagnetic data. The
role of the inner core is discussed in a spectral theoretical context and
arguments and numerical evidence is compiled that the growth of the inner core
might be important for the long term changes of the reversal rate and the
occurrence of superchrons.Comment: 24 pages, 12 figure
The behaviour and detection of partial thermoremanent magnetisation (PTRM) tails in Thellier palaeointensity experiments
Ultra-low palaeointensities from East European Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran
New palaeodirections and palaeointensity data from extensive profiles through the Ediacaran section of the Volyn Basalt Province (NW-Ukraine)
Summary Changes of the geomagnetic field over geologic time scales can be used to study the evolution and processes of its sources in Earth's deep interior. As a stark contrast to the geomagnetic field behaviour of the recent past, the field in the late Neoproterozoic is defined by ambiguous polar wander paths, ultra-low field strengths and a period of extreme reversal hyperactivity. Palaeointensity data from this time are still scarce and conclusions made from these data suffer from large uncertainties brought by a low sampling density. In this study, we present new palaeomagnetic and palaeointensity data from quarry outcrops and five deep drill cores, covering the longest and most complete profiles through the Ediacaran units in the Volyn Basalt Province (NW-Ukraine) to date. Palaeodirectional analysis of thermal and alternating field demagnetisation experiments reveal at least six reversals in the profile as well as four palaeopoles that agree with previously published poles. Whole-rock palaeointensity estimates are derived from a multi-method approach that utilises thermal and microwave Thellier experiments in Coe- and IZZI-protocol as well as Wilson and double-heating-Shaw experiments. These produce instantaneous site-mean palaeointensity estimates in the range of 2.1±0.4 µT - 11.1±3.5 µT and virtual dipole moments in the range of 0.31±0.06 ×1022Am2 - 1.67±0.53 ×1022Am2. Small-scale variations of palaeointensities throughout the profile not only show extremely weak field strengths around polarity changes but could also suggest that the field strength never fully recovered between reversals. These new results increase the density of intensity data coverage for Baltica in the Late Ediacaran and, in combination with previously published Ediacaran dipole moments, support an extremely weak field that seems to increase in strength towards the Ediacaran-Cambrian transition.</jats:p
