553 research outputs found
Structure-mechanics relationships of collagen fibrils in the Osteogenesis Imperfecta Mouse model
The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry.United States. Dept. of Defense. Presidential Early Career Award for Scientists and EngineersNational Science Foundation (U.S.) (CAREER Award
The use of XFEM to assess the influence of intra-cortical porosity on crack propagation
This study aimed at using eXtended finite element method (XFEM) to characterize crack growth through bone's intra-cortical pores. Two techniques were compared using Abaqus: (1) void material properties were assigned to pores; (2) multiple enrichment regions with independent crack-growth possibilities were employed. Both were applied to 2D models of transverse images of mouse bone with differing porous structures. Results revealed that assigning multiple enrichment regions allows for multiple cracks to be initiated progressively, which cannot be captured when the voids are filled. Therefore, filling pores with one enrichment region in the model will not create realistic fracture patterns in Abaqus-XFEM
Prolonging disuse in aged mice amplifies cortical but not trabecular bones’ response to mechanical loading
Objective: Short-term neurectomy-induced disuse (SN) has been shown to restore load responses in aged mice. We examined whether this restoration was further enhanced in both cortical and trabecular bone by simply extending the SN. Methods: Following load: strain calibration, tibiae in female C57BL/J6 mice at 8, 14 and 20 weeks and 18 months (n=8/group) were loaded and bone changes measured. Effects of long-term SN examined in twenty-six 18 months-old mice, neurectomised for 5 or 100 days with/without subsequent loading. Cortical and trabecular responses were measured histomorphometrically or by micro-computed tomography. Results: Loading increased new cortical bone formation, elevating cross-sectional area in 8, 14 and 20 week-old (p <0.05), but not 18 month-old aged mice. Histomorphometry showed that short-term SN reinstated load-responses in aged mice, with significant 33% and 117% increases in bone accrual at 47% and 37%, but not 27% of tibia length. Cortical responses to loading was heightened and widespread, now evident at all locations, following prolonged SN (108, 167 and 98% at 47, 37 and 27% of tibial length, respectively). In contrast, loading failed to modify trabecular bone mass or architecture. Conclusions: Mechanoadaptation become deficient with ageing and prolonging disuse amplifies this response in cortical but not trabecular bone
Predicting cortical bone adaptation to axial loading in the mouse tibia
The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms
Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing
PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have found that Phospho1 KO mice (Phospho1-R74X) display multiple skeletal abnormalities with spontaneous fractures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone turnover is limited. In this study, we have used ex-vivo computerised tomography to examine the effect of Phospho1 deletion on tibial bone architecture in mice at a range of ages (5, 7, 16 and 34 weeks of age) to establish whether its role is conserved during skeletal growth and maturation. Matrix mineralisation has also been reported to influence terminal osteoblast differentiation into osteocytes and we have also explored whether hypomineralised bones in Phospho1 KO mice exhibit modified osteocyte lacunar and vascular porosity. Our data reveal that Phospho1 deficiency generates age-related defects in trabecular architecture and compromised cortical microarchitecture with greater porosity accompanied by marked alterations in osteocyte shape, significant increases in osteocytic lacuna and vessel number. Our in vitro studies examining the behaviour of osteoblast derived from Phospho1 KO and wild-type mice reveal reduced levels of matrix mineralisation and modified osteocytogenic programming in cells deficient in PHOSPHO1. Together our data suggest that deficiency in PHOSPHO1 exerts modifications in bone architecture that are transient and depend upon age, yet produces consistent modification in lacunar and vascular porosity. It is possible that the inhibitory role of PHOSPHO1 on osteocyte differentiation leads to these age-related changes in bone architecture. It is also intriguing to note that this apparent acceleration in osteocyte differentiation evident in the hypomineralised bones of Phospho1 KO mice suggests an uncoupling of the interplay between osteocytogenesis and biomineralisation. Further studies are required to dissect the molecular processes underlying the regulatory influences exerted by PHOSPHO1 on the skeleton with ageing
Limb bone scaling in hopping diprotodonts and quadrupedal artiodactyls
Bone adaptation is modulated by the timing, direction, rate, and magnitude of mechanical loads. To investigate whether frequent slow, or infrequent fast, gaits could dominate bone adaptation to load, we compared scaling of the limb bones from two mammalian herbivore clades that use radically different high-speed gaits, bipedal hopping and quadrupedal galloping. Forelimb and hindlimb bones were collected from 20 artiodactyl and 15 diprotodont species (body mass M 1.05 - 1536 kg) and scanned in clinical computed tomography or X-ray microtomography. Second moment of area (Imax) and bone length (l) were measured. Scaling relations (y = axb) were calculated for l vs M for each bone and for Imax vs M and Imax vs l for every 5% of length. Imax vs M scaling relationships were broadly similar between clades despite the diprotodont forelimb being nearly unloaded, and the hindlimb highly loaded, during bipedal hopping. Imax vs l and l vs M scaling were related to locomotor and behavioural specialisations. Low-intensity loads may be sufficient to maintain bone mass across a wide range of species. Occasional high-intensity gaits might not break through the load sensitivity saturation engendered by frequent low-intensity gaits
Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling.
Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individual native collagen fibers from wildtype (+/+) and oim/oim diseased mice humeri. Our work presents direct experimental evidences that the +/+ fibers have highly organized and compact ultrastructure and corresponding ordered stiffness distribution. In contrast, oim/oim fibers have ordered but loosely packed ultrastructure with uncorrelated stiffness distribution, as well as local defects. The molecular model also demonstrates the structural and molecular packing differences between +/+ and oim/oim collagens. The molecular mutation significantly altered sub-fibril structure and mechanical property of collagen fibers. This study can give the new insight for the mechanisms and treatment of the brittle bone disease
Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling
Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individual native collagen fibers from wildtype (+/+) and oim/oim diseased mice humeri. Our work presents direct experimental evidences that the +/+ fibers have highly organized and compact ultrastructure and corresponding ordered stiffness distribution. In contrast, oim/oim fibers have ordered but loosely packed ultrastructure with uncorrelated stiffness distribution, as well as local defects. The molecular model also demonstrates the structural and molecular packing differences between +/+ and oim/oim collagens. The molecular mutation significantly altered sub-fibril structure and mechanical property of collagen fibers. This study can give the new insight for the mechanisms and treatment of the brittle bone disease
Electron Microscopy Reveals Structural and Chemical Changes at the Nanometer Scale in the Osteogenesis Imperfecta Murine Pathology
Alternations of collagen and mineral at the molecular level may have a significant impact on the strength and toughness of bone. In this study, scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) were employed to study structural and compositional changes in bone pathology at nanometer spatial resolution. Tail tendon and femoral bone of osteogenesis imperfecta murine (oim, brittle bone disease) and wild type (WT) mice were compared to reveal defects in the architecture and chemistry of the collagen and collagen-mineral composite in the oim tissue at the molecular level. There were marked differences in the substructure and organization of the collagen fibrils in the oim tail tendon; some regions have clear fibril banding and organization, while in other regions fibrils are disorganized. Malformed collagen fibrils were loosely packed, often bent and devoid of banding pattern. In bone, differences were detected in the chemical composition of mineral in oim and WT. While mineral present in WT and oim bone exhibited the major characteristics of apatite, examination in EELS of the fine structure of the carbon K ionization edge revealed a significant variation in the presence of carbonate in different regions of bone. Variations have been also observed in the fine structure and peak intensities of the nitrogen K-edge. These alterations are suggestive of differences in the maturation of collagen nucleation sites or cross-links. Future studies will aim to establish the scale and impact of the modifications observed in oim tissues. The compositional and structural alterations at the molecular level cause deficiencies at larger length scales. Understanding the effect of molecular alterations to pathologic bone is critical to the design of effective therapeutics
Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility
Osteogenesis imperfecta (brittle bone disease) is caused by mutations in the collagen genes and results in skeletal fragility. Changes in bone porosity at the tissue level indicate changes in bone metabolism and alter bone mechanical integrity. We investigated the cortical bone tissue porosity of a mouse model of the disease, oim, in comparison to a wild type (WT-C57BL/6), and examined the influence of canal architecture on bone mechanical performance.High-resolution 3D representations of the posterior tibial and the lateral humeral mid-diaphysis of the bones were acquired for both mouse groups using synchrotron radiation-based computed tomography at a nominal resolution of 700 nm. Volumetric morphometric indices were determined for cortical bone, canal network and osteocyte lacunae. The influence of canal porosity architecture on bone mechanics was investigated using microarchitectural finite element (?FE) models of the cortical bone. Bright-field microscopy of stained sections was used to determine if canals were vascular.Although total cortical porosity was comparable between oim and WT bone, oim bone had more numerous and more branched canals (p < 0.001), and more osteocyte lacunae per unit volume compared to WT (p < 0.001). Lacunae in oim were more spherical in shape compared to the ellipsoidal WT lacunae (p < 0.001). Histology revealed blood vessels in all WT and oim canals. ?FE models of cortical bone revealed that small and branched canals, typical of oim bone, increase the risk of bone failure. These results portray a state of compromised bone quality in oim bone at the tissue level, which contributes to its deficient mechanical properties
- …
