3,701 research outputs found

    Lower bounds for incidences with hypersurfaces

    Full text link
    We present a technique for deriving lower bounds for incidences with hypersurfaces in Rd{\mathbb R}^d with d4d\ge 4. These bounds apply to a large variety of hypersurfaces, such as hyperplanes, hyperspheres, paraboloids, and hypersurfaces of any degree. Beyond being the first non-trivial lower bounds for various incidence problems, our bounds show that some of the known upper bounds for incidence problems in Rd{\mathbb R}^d are tight up to an extra ε\varepsilon in the exponent. Specifically, for every mm, d4d\ge 4, and ε>0\varepsilon>0 there exist mm points and nn hypersurfaces in Rd{\mathbb R}^d (where nn depends on mm) with no K2,d1εK_{2,\frac{d-1}{\varepsilon}} in the incidence graph and Ω(m(2d2)/(2d1)nd/(2d1)ε)\Omega\left(m^{(2d-2)/(2d-1)}n^{d/(2d-1)-\varepsilon} \right) incidences. Moreover, we provide improved lower bounds for the case of no Ks,sK_{s,s} in the incidence graph, for large constants ss. Our analysis builds upon ideas from a recent work of Bourgain and Demeter on discrete Fourier restriction to the four- and five-dimensional spheres. Specifically, it is based on studying the additive energy of the integer points in a truncated paraboloid

    Higher Distance Energies and Expanders with Structure

    Get PDF
    We adapt the idea of higher moment energies, originally used in Additive Combinatorics, so that it would apply to problems in Discrete Geometry. This new approach leads to a variety of new results, such as (i) Improved bounds for the problem of distinct distances with local properties. (ii) Improved bounds for problems involving expanding polynomials in R[x,y]{\mathbb R}[x,y] (Elekes-Ronyai type bounds) when one or two of the sets have structure. Higher moment energies seem to be related to additional problems in Discrete Geometry, to lead to new elegant theory, and to raise new questions

    Fast domino tileability

    Get PDF
    Domino tileability is a classical problem in Discrete Geometry, famously solved by Thurston for simply connected regions in nearly linear time in the area. In this paper, we improve upon Thurston's height function approach to a nearly linear time in the perimeter.Comment: Appeared in Discrete Comput. Geom. 56 (2016), 377-39

    Point-curve incidences in the complex plane

    Get PDF
    We prove an incidence theorem for points and curves in the complex plane. Given a set of mm points in R2{\mathbb R}^2 and a set of nn curves with kk degrees of freedom, Pach and Sharir proved that the number of point-curve incidences is O(mk2k1n2k22k1+m+n)O\big(m^{\frac{k}{2k-1}}n^{\frac{2k-2}{2k-1}}+m+n\big). We establish the slightly weaker bound Oε(mk2k1+εn2k22k1+m+n)O_\varepsilon\big(m^{\frac{k}{2k-1}+\varepsilon}n^{\frac{2k-2}{2k-1}}+m+n\big) on the number of incidences between mm points and nn (complex) algebraic curves in C2{\mathbb C}^2 with kk degrees of freedom. We combine tools from algebraic geometry and differential geometry to prove a key technical lemma that controls the number of complex curves that can be contained inside a real hypersurface. This lemma may be of independent interest to other researchers proving incidence theorems over C{\mathbb C}.Comment: The proof was significantly simplified, and now relies on the Picard-Lindelof theorem, rather than on foliation
    corecore