79 research outputs found
Recommended from our members
A fixed-target platform for serial femtosecond crystallography in a hydrated environment.
For serial femtosecond crystallography at X-ray free-electron lasers, which entails collection of single-pulse diffraction patterns from a constantly refreshed supply of microcrystalline sample, delivery of the sample into the X-ray beam path while maintaining low background remains a technical challenge for some experiments, especially where this methodology is applied to relatively low-ordered samples or those difficult to purify and crystallize in large quantities. This work demonstrates a scheme to encapsulate biological samples using polymer thin films and graphene to maintain sample hydration in vacuum conditions. The encapsulated sample is delivered into the X-ray beam on fixed targets for rapid scanning using the Roadrunner fixed-target system towards a long-term goal of low-background measurements on weakly diffracting samples. As a proof of principle, we used microcrystals of the 24 kDa rapid encystment protein (REP24) to provide a benchmark for polymer/graphene sandwich performance. The REP24 microcrystal unit cell obtained from our sandwiched in-vacuum sample was consistent with previously established unit-cell parameters and with those measured by us without encapsulation in humidified helium, indicating that the platform is robust against evaporative losses. While significant scattering from water was observed because of the sample-deposition method, the polymer/graphene sandwich itself was shown to contribute minimally to background scattering
Observation of Spontaneous Brillouin Cooling
While radiation-pressure cooling is well known, the Brillouin scattering of
light from sound is considered an acousto-optical amplification-only process.
It was suggested that cooling could be possible in multi-resonance Brillouin
systems when phonons experience lower damping than light. However, this regime
was not accessible in traditional Brillouin systems since backscattering
enforces high acoustical frequencies associated with high mechanical damping.
Recently, forward Brillouin scattering in microcavities has allowed access to
low-frequency acoustical modes where mechanical dissipation is lower than
optical dissipation, in accordance with the requirements for cooling. Here we
experimentally demonstrate cooling via such a forward Brillouin process in a
microresonator. We show two regimes of operation for the Brillouin process:
acoustical amplification as is traditional, but also for the first time, a
Brillouin cooling regime. Cooling is mediated by an optical pump, and scattered
light, that beat and electrostrictively attenuate the Brownian motion of the
mechanical mode.Comment: Supplementary material include
Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms
Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration
Co-flow injection for serial crystallography at X-ray free-electron lasers
Serial femtosecond crystallography (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macromolecules at room temperature. Despite the impressive exposition of structural details with this novel crystallographic approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to additional sheathing liquids present during the injection. Proposed and characterized here is the use of an immiscible inert oil phase to supplement the flow of sample in a hybrid microfluidic 3D-printed co-flow device. Co-flow generation is reported with sample and oil phases flowing in parallel, resulting in stable injection conditions for two different resin materials experimentally. A numerical model is presented that adequately predicts these flow-rate conditions. The co-flow generating devices reduce crystal clogging effects, have the potential to conserve protein crystal samples up to 95% and will allow degradation-free light-induced time-resolved SFX
Stimulated optomechanical excitation of surface acoustic waves in a microdevice
Stimulated Brillouin interaction between sound and light, known to be the
strongest optical nonlinearity common to all amorphous and crystalline
dielectrics, has been widely studied in fibers and bulk materials but rarely in
optical microresonators. The possibility of experimentally extending this
principle to excite mechanical resonances in photonic microsystems, for sensing
and frequency reference applications, has remained largely unexplored. The
challenge lies in the fact that microresonators inherently have large free
spectral range, while the phase matching considerations for the Brillouin
process require optical modes of nearby frequencies but with different
wavevectors. We rely on high-order transverse optical modes to relax this
limitation. Here we report on the experimental excitation of mechanical
resonances ranging from 49 to 1400 MHz by using forward Brillouin scattering.
These natural mechanical resonances are excited in ~100 um silica microspheres,
and are of a surface-acoustic whispering-gallery type
Implementation and results of an integrated data quality assurance protocol in a randomized controlled trial in Uttar Pradesh, India
Immunity of an Alternative Host Can Be Overcome by Higher Densities of Its Parasitoids Palmistichus elaeisis and Trichospilus diatraeae
Interactions of the parasitoids Palmistichus elaeisis Delvare & LaSalle and Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae) with its alternative host Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) affect the success or failure of the mass production of these parasitoids for use in integrated pest management programs. The aim of this study was to evaluate changes in the cellular defense and encapsulation ability of A. gemmatalis pupae against P. elaeisis or T. diatraeae in adult parasitoid densities of 1, 3, 5, 7, 9, 11 or 13 parasitoids/pupae. We evaluated the total quantity of circulating hemocytes and the encapsulation rate versus density. Increasing parasitoid density reduced the total number of hemocytes in the hemolymph and the encapsulation rate by parasitized pupae. Furthermore, densities of P. elaeisis above 5 parasitoids/pupae caused higher reduction in total hemocyte numbers. The encapsulation rate fell with increasing parasitoid density. However, parasitic invasion by both species induced generally similar responses. The reduction in defensive capacity of A. gemmatalis is related to the adjustment of the density of these parasitoids to their development in this host. Thus, the role of the density of P. elaeisis or T. diatraeae by pupa is induced suppression of cellular defense and encapsulation of the host, even without them possesses a co-evolutionary history. Furthermore, these findings can predict the success of P. elaeisis and T. diatraeae in the control of insect pests through the use of immunology as a tool for evaluation of natural enemies
Sequential Assembly of Centromeric Proteins in Male Mouse Meiosis
The assembly of the mitotic centromere has been extensively studied in recent years, revealing the sequence and regulation of protein loading to this chromosome domain. However, few studies have analyzed centromere assembly during mammalian meiosis. This study specifically targets this approach on mouse spermatocytes. We have found that during prophase I, the proteins of the chromosomal passenger complex Borealin, INCENP, and Aurora-B load sequentially to the inner centromere before Shugoshin 2 and MCAK. The last proteins to be assembled are the outer kinetochore proteins BubR1 and CENP-E. All these proteins are not detected at the centromere during anaphase/telophase I and are then reloaded during interkinesis. The loading sequence of the analyzed proteins is similar during prophase I and interkinesis. These findings demonstrate that the interkinesis stage, regularly overlooked, is essential for centromere and kinetochore maturation and reorganization previous to the second meiotic division. We also demonstrate that Shugoshin 2 is necessary for the loading of MCAK at the inner centromere, but is dispensable for the loading of the outer kinetochore proteins BubR1 and CENP-E
QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize
- …
