28 research outputs found

    Stochastic inflation in general relativity

    Get PDF
    \ua9 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article\u27s title, journal citation, and DOI. We provide a formulation of stochastic inflation in full general relativity that goes beyond the slow-roll and separate universe approximations. We show how gauge-invariant Langevin source terms can be obtained for the complete set of Einstein equations in their Arnowitt-Deser-Misner formulation by providing a recipe for coarse-graining the spacetime in any small gauge. These stochastic source terms are defined in terms of the only dynamical scalar degree of freedom in single-field inflation and all depend simply on the first two time derivatives of the coarse-graining window function, on the gauge-invariant mode functions that satisfy the Mukhanov-Sasaki evolution equation, and on the slow-roll parameters. It is shown that this reasoning can also be applied to include gravitons as stochastic sources, thus enabling the study of all relevant degrees of freedom of general relativity for inflation. We validate the efficacy of these Langevin dynamics directly using an example in uniform field gauge, obtaining the stochastic e-fold number in the long wavelength limit without the need for a first-passage-time analysis. As well as investigating the most commonly used gauges in cosmological perturbation theory, we also derive stochastic source terms for the coarse-grained Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein\u27s equations, which enables a well-posed implementation for 3+1 numerical relativity simulations

    Quantitative classicality in cosmological interactions during inflation

    Get PDF
    We examine the classical and quantum evolution of inflationary cosmological perturbations from quantum initial conditions, using the on-shell and off-shell contributions to correlators to investigate the signatures of interactions. In particular, we calculate the Keldysh contributions to the leading order bispectrum from past infinity, showing that the squeezed limit is dominated by the on-shell evolution. By truncating the time integrals in the analytic expressions for contributions to the bispectrum, we define a `quantum interactivity\u27 and quantitatively identify scales and times for which it is sufficient to only assume classical evolution, given a fixed precision. In contrast to typical perceptions inspired by free two-point functions, we show that common non-linear contributions to inflationary perturbations can be well-described by classical evolution even prior to horizon crossing. The insights gained here can pave the way for quantitative criteria for justifying the validity of numerically simulating the generation and evolution of quantum fluctuations in inflation. In particular, we comment on the validity of using stochastic inflation to reproduce known in-in perturbative results. An extensive appendix provides a review of the Keldysh formulation of the in-in formalism with the initial state set at a finite, as opposed to infinite past, emphasizing the importance of considering temporal boundary terms and the initial state for correctly obtaining the propagators. We also show how stochastic dynamics can emerge as a sufficiently accurate approximation to the full quantum evolution. This becomes particularly transparent in the Keldysh description

    Probing inflation with precision bispectra

    Get PDF
    Calculating the primordial bispectrum predicted by a model of inflation and comparing it to what we see in the sky is very computationally intensive, necessitating layers of approximations and limiting the models which can be constrained. Exploiting the inherent separability of the tree level in-in formalism using expansions in separable basis functions provides a means by which to obviate some of these difficulties. Here, we develop this approach further into a practical and efficient numerical methodology which can be applied to a much wider and more complicated range of bispectrum phenomenology, making an important step forward towards observational pipelines which can directly confront specific models of inflation. We describe a simple augmented Legendre polynomial basis and its advantages, then test the method on single-field inflation models with non-trivial phenomenology, showing that our calculation of these coefficients is fast and accurate to high orders

    Bunch-Davies initial conditions and nonperturbative inflationary dynamics in numerical relativity

    Get PDF
    We show that it is possible to simulate realistic inhomogeneities during cosmological inflation with high precision using numerical relativity. Stochastic initial conditions are set in line with the Bunch-Davies vacuum and satisfy the Hamiltonian and Momentum constraints of general relativity to leading order in perturbation theory. The subsequent fully nonlinear dynamical evolution is formulated within a family of geodesic gauges but can, in principle, be adapted to any choice of coordinates. We present three examples of inflationary dynamics: a simple quadratic potential, a potential with an inflection point, and a strong resonance model. When perturbations are small, we recover standard predictions of cosmological perturbation theory, and we quantify strongly nonlinear inhomogeneities when nonperturbative configurations emerge, such as in the strong resonance model. Our results pave the way toward the first realistic nonperturbative and fully nonlinear numerical relativity simulations of the early inflationary universe

    Using inpainting to construct accurate cut-sky CMB estimators

    Get PDF
    The direct evaluation of manifestly optimal, cut-sky cosmic microwave background (CMB) power spectrum and bispectrum estimators is numerically very costly, due to the presence of inverse-covariance filtering operations. This justifies the investigation of alternative approaches. In this work, we mostly focus on an inpainting algorithm that was introduced in recent CMB analyses to cure cut-sky suboptimalities of bispectrum estimators. First, we show that inpainting can equally be applied to the problem of unbiased estimation of power spectra. We then compare the performance of a novel inpainted CMB temperature power spectrum estimator to the popular apodized pseudo-Cl_{l} (PCL) method and demonstrate, both numerically and with analytic arguments, that inpainted power spectrum estimates significantly outperform PCL estimates. Finally, we study the case of cut-sky bispectrum estimators, comparing the performance of three different approaches: inpainting, apodization and a novel low-l leaning scheme. Providing an analytic argument of why the local shape is typically most affected we mainly focus on local-type non-Gaussianity. Our results show that inpainting allows us to achieve optimality also for bispectrum estimation, but interestingly also demonstrate that appropriate apodization, in conjunction with low-l cleaning, can lead to comparable accuracy.H. F. G. gratefully acknowledges the support of the Studienstiftung des deutschen Volkes, an Science and Technology Funding Council (STFC) studentship and a studentship of the Centre for Theoretical Cosmology (CTC), Department for Applied Mathematics and Theoretical Physics (DAMTP). This work was supported by an STFC consolidated Grant No. ST/L000636/1. It was undertaken on the COSMOS Shared Memory system at DAMTP, University of Cambridge, operated on behalf of the STFC Distributed Research utilising Advanced Computing (DiRAC) High Performance Computing (HPC) Facility. This equipment is funded by Business Innovation and Skills (BIS) National E-infrastructure capital Grant No. ST/J005673/1 and STFC Grants No. ST/H008586/1 and No. ST/K00333X/1

    Planck 2015 results: XV. gravitational lensing

    Get PDF
    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40<L<400 and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the best-fitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ 8 Ω 0.25 m =0.591±0.021 . We combine our determination of the lensing potential with the E-mode polarization also measured by Planck to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected due to dark energy in the concordance LCDM model

    Planck 2018 results. IX. Constraints on primordial non-Gaussianity

    Get PDF
    We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following results: f_NL^local = -0.9 +\- 5.1; f_NL^equil = -26 +\- 47; and f_NL^ortho = - 38 +\- 24 (68%CL, statistical). These results include the low-multipole (4 <= l < 40) polarization data, not included in our previous analysis, pass an extensive battery of tests, and are stable with respect to our 2015 measurements. Polarization bispectra display a significant improvement in robustness; they can now be used independently to set NG constraints. We consider a large number of additional cases, e.g. scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5 sigma. We present model-independent reconstructions and analyses of the CMB bispectrum. Our final constraint on the local trispectrum shape is g_NLl^local = (-5.8 +\-6.5) x 10^4 (68%CL, statistical), while constraints for other trispectra are also determined. We constrain the parameter space of different early-Universe scenarios, including general single-field models of inflation, multi-field and axion field parity-breaking models. Our results provide a high-precision test for structure-formation scenarios, in complete agreement with the basic picture of the LambdaCDM cosmology regarding the statistics of the initial conditions (abridged)

    Planck 2018 results. VII. Isotropy and Statistics of the CMB

    Get PDF
    Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the Λ\LambdaCDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, QQ and UU, or the EE-mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., 400\ell \lesssim 400). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the Λ\LambdaCDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales

    Planck 2018 results. VII. Isotropy and statistics of the CMB

    Get PDF
    Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the Λ\LambdaCDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, QQ and UU, or the EE-mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., 400\ell \lesssim 400). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the Λ\LambdaCDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales
    corecore