727 research outputs found
Functional renormalization group approach to the singlet-triplet transition in quantum dots
We present a functional renormalization group approach to the zero bias
transport properties of a quantum dot with two different orbitals and in
presence of Hund's coupling. Tuning the energy separation of the orbital
states, the quantum dot can be driven through a singlet-triplet transition. Our
approach, based on the approach by Karrasch {\em et al} which we apply to
spin-dependent interactions, recovers the key characteristics of the quantum
dot transport properties with very little numerical effort. We present results
on the conductance in the vicinity of the transition and compare our results
both with previous numerical renormalization group results and with predictions
of the perturbative renormalization group.Comment: 15 pages, 9 figure
Angle-resolved reflectance and surface plasmonics of the MAX phases
We investigate theoretically the optical response of bulk samples and thin
films of the MAX phases materials, accounting for their large electrical
anisotropy. We reveal the unusual behaviour of the reflection and transmittion
spectra as a function of the incidence angle and predict the effect of the
inverse total internal reflection. We also investigate the behaviour of the
surface plasmon modes in bulk samples and thin films and analyse the difference
between MAX materials and conventional metals.Comment: 3 pages, published in Optics Letter
Structure of surface electronic states in strained mercury telluride
We present the theory describing the various surface electronic states arisen
from the mixing of conduction and valence bands in a strained mercury telluride
(HgTe) bulk material. We demonstrate that the strain-induced band gap in the
Brillouin zone center of HgTe results in the surface states of two different
kinds. Surface states of the first kind exist in the small region of electron
wave vectors near the center of the Brillouin zone and have the Dirac linear
electron dispersion characteristic for topological states. The surface states
of the second kind exist only far from the center of the Brillouin zone and
have the parabolic dispersion for large wave vectors. The structure of these
surface electronic states is studied both analytically and numerically in the
broad range of their parameters, aiming to develop its systematic understanding
for the relevant model Hamiltonian. The results bring attention to the rich
surface physics relevant for topological systems.Comment: Published version. arXiv admin note: text overlap with
arXiv:1903.0457
Magnetic Field Control of the Optical Spin Hall Effect
We investigate theoretically the effect of an external magnetic field on
polarization patterns appearing in quantum microcavities due to the optical
spin Hall effect (OSHE). We show that increase of the magnetic field
perpendicular to the plane of the cavity resulting in the increase of the
Zeeman splitting leads to the transition from azimuthal separation of
polarizations to their radial separation. This effect can be straightforwardly
detected experimentally.Comment: 9 pages, 6 figure
Parity solitons in nonresonantly driven-dissipative condensate channels
We study analytically and numerically the condensation of a
driven-dissipative exciton-polariton system using symmetric nonresonant pumping
geometries. We show that the lowest condensation threshold solution carries a
definite parity as a consequence of the symmetric excitation profile. At higher
pump intensities competition between the two parities can result in critical
quenching of one and saturation of the other. Using long pump channels, we show
that the competition of the condensate parities gives rise to a different type
of topologically stable defect propagating indefinitely along the condensate.
The defects display repulsive interactions and are characterized by a sustained
wavepacket carrying a pair of opposite parity domain walls in the condensate
channel
Switching waves in multi-level incoherently driven polariton condensates
We show theoretically that an open-dissipative polariton condensate confined
within a trapping potential and driven by an incoherent pumping scheme gives
rise to bistability between odd and even modes of the potential. Switching from
one state to the other can be controlled via incoherent pulsing which becomes
an important step towards construction of low-powered opto-electronic devices.
The origin of the effect comes from modulational instability between odd and
even states of the trapping potential governed by the nonlinear
polariton-polariton interactions
Quantum Hall Bilayer as Pseudospin Magnet
We revisit the physics of electron gas bilayers in the quantum Hall regime
[Nature, 432 (2004) 691; Science, 305 (2004) 950], where transport and
tunneling measurements provided evidence of a superfluid phase being present in
the system. Previously, this behavior was explained by the possible formation
of a BEC of excitons in the half-filled electron bilayers, where empty states
play the role of holes. We discuss the fundamental difficulties with this
scenario, and propose an alternative approach based on a treatment of the
system as a pseudospin magnet. We show that the experimentally observed
tunneling peak can be linked to the XY ferromagnet (FM) to Ising
antiferromagnet (AFM) phase transition of the S=1/2 XXZ pseudospin model,
driven by the change in total electron density. This transition is accompanied
by a qualitative change in the nature of the low energy spin wave dispersion
from a gapless linear mode in the XY-FM phase to a gapped, quadratic mode in
the Ising-AFM phase.Comment: 5 pages, 4 figures; corrected and close to printed versio
Aharonov-Bohm effect for excitons in a semiconductor quantum ring dressed by circularly polarized light
We show theoretically that the strong coupling of circularly polarized
photons to an exciton in ring-like semiconductor nanostructures results in
physical nonequivalence of clockwise and counterclockwise exciton rotations in
the ring. As a consequence, the stationary energy splitting of exciton states
corresponding to these mutually opposite rotations appears. This excitonic
Aharonov-Bohm effect depends on the intensity and frequency of the circularly
polarized field and can be detected in state-of-the-art optical experiments.Comment: Published versio
- …
