729 research outputs found

    Double oscillating diffusion encoding and sensitivity to microscopic anisotropy

    Get PDF
    PURPOSE: To introduce a novel diffusion pulse sequence, namely double oscillating diffusion encoding (DODE), and to investigate whether it adds sensitivity to microscopic diffusion anisotropy (µA) compared to the well-established double diffusion encoding (DDE) methodology. METHODS: We simulate measurements from DODE and DDE sequences for different types of microstructures exhibiting restricted diffusion. First, we compare the effect of varying pulse sequence parameters on the DODE and DDE signal. Then, we analyse the sensitivity of the two sequences to the microstructural parameters (pore diameter and length) which determine µA. Finally, we investigate specificity of measurements to particular substrate configurations. RESULTS: Simulations show that DODE sequences exhibit similar signal dependence on the relative angle between the two gradients as DDE sequences, however, the effect of varying the mixing time is less pronounced. The sensitivity analysis shows that in substrates with elongated pores and various orientations, DODE sequences increase the sensitivity to pore diameter, while DDE sequences are more sensitive to pore length. Moreover, DDE and DODE sequence parameters can be tailored to enhance/suppress the signal from a particular range of substrates. CONCLUSIONS: A combination of DODE and DDE sequences maximize sensitivity to µA, compared to using just the DDE method. Magn Reson Med, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine

    Polarization sensitive spectroscopy of charged Quantum Dots

    Full text link
    We present an experimental and theoretical study of the polarized photoluminescence spectrum of single semiconductor quantum dots in various charge states. We compare our high resolution polarization sensitive spectral measurements with a new many-carrier theoretical model, which was developed for this purpose. The model considers both the isotropic and anisotropic exchange interactions between all participating electron-hole pairs. With this addition, we calculate both the energies and polarizations of all optical transitions between collective, quantum dot confined charge carrier states. We succeed in identifying most of the measured spectral lines. In particular, the lines resulting from singly-, doubly- and triply- negatively charged excitons and biexcitons. We demonstrate that lines emanating from evenly charged states are linearly polarized. Their polarization direction does not necessarily coincide with the traditional crystallographic direction. It depends on the shells of the single carriers, which participate in the recombination process.Comment: 11 pages, 9 figures. Revised versio

    Mineral maturity and crystallinity index are distinct characteristics of bone mineral

    Get PDF
    The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis

    Abundance of cell bodies can explain the stick model’s failure in grey matter at high bvalue

    Get PDF
    This work investigates the validity of the stick model used in diffusion-weighted MRI for modelling cellular projections in brain tissue. We hypothesize that the model will fail to describe the signals from grey matter due to an abundance of cell bodies. Using high b-value (≥3 ms/µm ) data from rat and human brain, we show that the assumption fails for grey matter. Using diffusion simulation in realistic digital models of neurons/glia, we demonstrate the breakdown of the assumption can be explained by the presence of cell bodies. Our findings suggest that high b-value data may be used to probe cell bodies

    A compartment based model for non-invasive cell body imaging by diffusion MRI

    Get PDF
    This study aims to open a new window onto brain tissue microstructure by proposing a new technique to estimate cell body (namely soma) size/density non-invasively. Using Monte-Carlo simulation and data from rat brain, we show that soma’s size and density have a specific signature on the direction-averaged DW-MRI signal at high b values. Simulation shows that, at reasonably short diffusion times, soma and neurites can be approximated as two non-exchanging compartments, modelled as “sphere” and “sticks” respectively. Fitting this simple compartment model to rat data produces maps with contrast consistent with published histological data

    Validation and noise robustness assessment of microscopic anisotropy estimation with clinically feasible double diffusion encoding MRI

    Get PDF
    Purpose: Double diffusion encoding (DDE) MRI enables the estimation of microscopic diffusion anisotropy, yielding valuable information on tissue microstructure. A recent study proposed that the acquisition of rotationally invariant DDE metrics, typically obtained using a spherical “5‐design,” could be greatly simplified by assuming Gaussian diffusion, facilitating reduced acquisition times that are more compatible with clinical settings. Here, we aim to validate the new minimal acquisition scheme against the standard DDE 5‐design, and to quantify the proposed method's noise robustness to facilitate future clinical use. / Theory and Methods: DDE MRI experiments were performed on both ex vivo and in vivo rat brains at 9.4 T using the 5‐design and the proposed minimal design and taking into account the difference in the number of acquisitions. The ensuing microscopic fractional anisotropy (μFA) maps were compared over a range of b‐values up to 5000 s/mm2. Noise robustness was studied using analytical calculations and numerical simulations. / Results: The minimal protocol quantified μFA at an accuracy comparable to the estimates obtained by means of the more theoretically robust DDE 5‐design. μFA's sensitivity to noise was found to strongly depend on compartment anisotropy and tensor magnitude in a nonlinear manner. When μFA < 0.75 or when mean diffusivity is particularly low, very high signal‐to‐noise ratio is required for precise quantification of µFA. / Conclusion: Our work supports using DDE for quantifying microscopic diffusion anisotropy in clinical settings but raises hitherto overlooked precision issues when measuring μFA with DDE and typical clinical signal‐to‐noise ratio

    Histological validation of the brain cell body imaging with diffusion MRI at ultrahigh field

    Get PDF
    Biophysical modelling of diffusion-weighted MRI (DW-MRI) data can help to gain more insight into brain microstructure. However, models need to be validated. This work validates a recently-developed technique for non-invasive mapping of brain cell-body (soma) size/ density with DW-MRI, by using ultrahigh-field DW-MRI experiments and histology of mouse brain. Predictions from numerical simulations are experimentally confirmed and brain’s maps of MR-measured soma size/density are shown to correspond very well with histology. We provide differential contrasts between cell layers that are less expressed in tensor analyses, leading to novel complementary contrasts of the brain tissue. Limitations and future research directions are discussed
    corecore