74,993 research outputs found
Suppression of local haze variations in MERIS images over turbid coastal waters for retrieval of suspended sediment concentration
Atmospheric correction over turbid waters can be problematic if atmospheric haze is spatially variable. In this case the retrieval of water quality is hampered by the fact that haze variations could be partly mistaken for variations in suspended sediment concentration (SSC). In this study we propose the suppression of local haze variations while leaving sediment variations intact. This is accomplished by a multispectral data projection (MDP) method based on a linear spectral mixing model, and applied prior to the actual standard atmospheric correction. In this linear model, the hazesediment spectral mixing was simulated by a coupled water-atmosphere radiative transfer (RT) model. As a result, local haze variations were largely suppressed and transformed into an approximately homogenous atmosphere over the MERIS top-of-atmosphere (TOA) radiance scene. The suppression of local haze variations increases the number of satellite images that are still suitable for standard atmospheric correction processing and subsequent water quality analysi
Optimization of Dimples in Microchannel Heat Sink with Impinging Jets—Part B: the Influences of Dimple Height and Arrangement
The combination of a microchannel heat sink with impinging jets and dimples (MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design
Network simulation using the simulation language for alternate modeling (SLAM 2)
The simulation language for alternate modeling (SLAM 2) is a general purpose language that combines network, discrete event, and continuous modeling capabilities in a single language system. The efficacy of the system's network modeling is examined and discussed. Examples are given of the symbolism that is used, and an example problem and model are derived. The results are discussed in terms of the ease of programming, special features, and system limitations. The system offers many features which allow rapid model development and provides an informative standardized output. The system also has limitations which may cause undetected errors and misleading reports unless the user is aware of these programming characteristics
N-fold way simulated tempering for pairwise interaction point processes
Pairwise interaction point processes with strong interaction are usually difficult to
sample. We discuss how Besag lattice processes can be used in a simulated tempering
MCMC scheme to help with the simulation of such processes. We show how
the N-fold way algorithm can be used to sample the lattice processes efficiently
and introduce the N-fold way algorithm into our simulated tempering scheme. To
calibrate the simulated tempering scheme we use the Wang-Landau algorithm
- …
