462 research outputs found
Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry
Isoprene is an important atmospheric volatile organic compound involved in ozone production and NO<sub>x</sub> (NO+NO<sub>2</sub>) sequestration and transport. Isoprene reaction with OH in the presence of NO can form either isoprene hydroxy nitrates ("isoprene nitrates") or convert NO to NO<sub>2</sub> which can photolyze to form ozone. While it has been shown that isoprene nitrate production can represent an important sink for NO<sub>x</sub> in forest impacted environments, there is little experimental knowledge of the relative importance of the individual isoprene nitrate isomers, each of which has a different fate and reactivity. In this work, we have identified the 8 individual isomers and determined their total and individual production yields. The overall yield of isoprene nitrates at atmospheric pressure and 295 K was found to be 0.070(+0.025/−0.015). Three isomers, representing nitrates resulting from OH addition to a terminal carbon, represent 90% of the total IN yield. We also determined the ozone rate constants for three of the isomers, and have calculated their atmospheric lifetimes, which range from ~1–2 h, making their oxidation products likely more important as atmospheric organic nitrates and sinks for nitrogen
Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic
International audienceVolatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack) to correctly simulate the VOC chemistry of the Arctic, and further evidence that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events is presented
Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea Ice Cover
Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion
Kinetics of isothermal and non-isothermal precipitation in an Al-6at%Si alloy
A novel theory which describes the progress of a thermally activated reaction under isothermal and linear heating conditions is presented. It incorporates nucleation, growth and impingement and takes account of temperaturedependent solubility. The model generally fits very well to isothermal calorimetry and differential scanning calorimetry data on precipitation in an Al-6 at.% Si alloy. Analysis of the data shows that two processes occur in this precipitation reaction: growth of large Si particles and growth of pre-existing small nuclei. Determination of the sizes of Si precipitates by transmission electron microscopy indicates that interfacial energy contributions are small and have a negligible influence on solubilit
pH-dependent production of molecular chlorine, bromine, and iodine from frozen saline surfaces
The mechanisms of molecular halogen production from frozen saline surfaces
remain incompletely understood, limiting our ability to predict atmospheric
oxidation and composition in polar regions. In this laboratory study,
condensed-phase hydroxyl radicals (OH) were photochemically generated in
frozen saltwater solutions that mimicked the ionic composition of ocean
water. These hydroxyl radicals were found to oxidize Cl−, Br−, and
I−, leading to the release of Cl2, Br2, I2, and IBr. At
moderately acidic pH (buffered between 4.5 and 4.8), irradiation of ice
containing OH precursors (either of hydrogen peroxide or nitrite ion)
produced elevated amounts of I2. Subsequent addition of O3
produced additional I2, as well as small amounts of Br2. At lower
pH (1.7–2.2) and in the presence of an OH precursor, rapid dark conversion
of I− to I2 occurred from reactions with hydrogen peroxide or
nitrite, followed by substantial photochemical production of Br2 upon
irradiation. Exposure to O3 under these low pH conditions also
increased production of Br2 and I2; this likely results from
direct O3 reactions with halides, as well as the production of
gas-phase HOBr and HOI that subsequently diffuse to frozen solution to react
with Br− and I−. Photochemical production of Cl2 was only
observed when the irradiated sample was composed of high-purity NaCl and
hydrogen peroxide (acting as the OH precursor) at pH = 1.8. Though
condensed-phase OH was shown to produce Cl2 in this study, kinetics
calculations suggest that heterogeneous recycling chemistry may be equally
or more important for Cl2 production in the Arctic atmosphere. The
condensed-phase OH-mediated halogen production mechanisms demonstrated here
are consistent with those proposed from recent Arctic field observations of
molecular halogen production from snowpacks. These reactions, even if slow,
may be important for providing seed halogens to the Arctic atmosphere. Our
results suggest the observed molecular halogen products are dependent on the
relative concentrations of halides at the ice surface, as we only observe
what diffuses to the air–surface interface.</p
Temporal and spatial characteristics of ozone depletion events from measurements in the Arctic
Following polar sunrise in the Arctic springtime, tropospheric ozone
episodically decreases rapidly to near-zero levels during ozone depletion
events (ODEs). Many uncertainties remain in our understanding of ODE
characteristics, including the temporal and spatial scales, as well as
environmental drivers. Measurements of ozone, bromine monoxide (BrO), and
meteorology were obtained during several deployments of autonomous,
ice-tethered buoys (O-Buoys) from both coastal sites and over the Arctic
Ocean; these data were used to characterize observed ODEs. Detected
decreases in surface ozone levels during the onset of ODEs corresponded to a
median estimated apparent ozone depletion timescale (based on both chemistry
and the advection of O<sub>3</sub>-depleted air) of 11 h. If assumed to be
dominated by chemical mechanisms, these timescales would correspond to
larger-than-observed BrO mole fractions based on known chemistry and assumed
other radical levels. Using backward air mass trajectories and an assumption
that transport mechanisms dominate observations, the spatial scales for ODEs
(defined by time periods in which ozone levels ≤15 nmol mol<sup>−1</sup>)
were estimated to be 877 km (median), while areas estimated to represent
major ozone depletions (<10 nmol mol<sup>−1</sup>) had dimensions of
282 km (median). These observations point to a heterogeneous boundary layer with
localized regions of active, ozone-destroying halogen chemistry,
interspersed among larger regions of previously depleted air that retain
reduced ozone levels through hindered atmospheric mixing. Based on the
estimated size distribution, Monte Carlo simulations showed it was
statistically possible that all ODEs observed could have originated upwind,
followed by transport to the measurement site. Local wind speed averages
were low during most ODEs (median of ~3.6 m s<sup>−1</sup>), and
there was no apparent dependence on local temperature
- …
