82 research outputs found
Selective laser ionization of N 82 indium isotopes: the new r-process nuclide In
Production yields and beta-decay half-lives of very neutron-rich indium isotopes were determined at CERN/ISOLDE using isobaric selectivity of a resonance-ionization laser ion-source. Beta-delayed neutron multiscaling measurements have yielded improved half-lives for 206(6)~ms In, 165(3)~ms In and 141(5)~ms In. With 92(10)~ms In, a new r-process nuclide has been identified which acts as an important `waiting-point' in the In isotopic chain for neutron densities in the range n--10 n/cm, where the r-matter flow has already passed the abundance-peak region
Production of neutron-rich nuclei in fragmentation reactions of 132Sn projectiles at relativistic energies
The fragmentation of neutron-rich 132Sn nuclei produced in the fission of
238U projectiles at 950 MeV/u has been investigated at the FRagment Separator
(FRS) at GSI. This work represents the first investigation of fragmentation of
medium-mass radioactive projectiles with a large neutron excess. The measured
production cross sections of the residual nuclei are relevant for the possible
use of a two-stage reaction scheme (fission+fragmentation) for the production
of extremely neutron-rich medium-mass nuclei in future rare-ion-beam
facilities. Moreover, the new data will provide a better understanding of the
"memory" effect in fragmentation reactions.Comment: 5 pages, 3 figure
Shell-model calculations and realistic effective interactions
A review is presented of the development and current status of nuclear
shell-model calculations in which the two-body effective interaction is derived
from the free nucleon-nucleon potential. The significant progress made in this
field within the last decade is emphasized, in particular as regards the
so-called V-low-k approach to the renormalization of the bare nucleon-nucleon
interaction. In the last part of the review we first give a survey of realistic
shell-model calculations from early to present days. Then, we report recent
results for neutron-rich nuclei near doubly magic 132Sn and for the whole
even-mass N=82 isotonic chain. These illustrate how shell-model effective
interactions derived from modern nucleon-nucleon potentials are able to provide
an accurate description of nuclear structure properties.Comment: 71 pages, to be published in Progress in Particle and Nuclear Physic
First identification of excited states in Ba-117 using the recoil-beta-delayed proton tagging technique
Pairing in nuclear systems: from neutron stars to finite nuclei
We discuss several pairing-related phenomena in nuclear systems, ranging from
superfluidity in neutron stars to the gradual breaking of pairs in finite
nuclei. We focus on the links between many-body pairing as it evolves from the
underlying nucleon-nucleon interaction and the eventual experimental and
theoretical manifestations of superfluidity in infinite nuclear matter and of
pairing in finite nuclei. We analyse the nature of pair correlations in nuclei
and their potential impact on nuclear structure experiments. We also describe
recent experimental evidence that points to a relation between pairing and
phase transitions (or transformations) in finite nuclear systems. Finally, we
discuss recent investigations of ground-state properties of random two-body
interactions where pairing plays little role although the interactions yield
interesting nuclear properties such as 0+ ground states in even-even nuclei.Comment: 74 pages, 33 figs, uses revtex4. Submitted to Reviews of Modern
Physic
Level structure of Si26 and its implications for the astrophysical reaction rate of Al25(p,γ)Si26
A study of the level structure of Si26 using in-beam γ-ray spectroscopy is presented. A full level scheme is derived incorporating all states lying below the proton threshold energy. The results are in good agreement with shell model predictions and one-to-one correspondence is found with states in the mirror nucleus Mg26. Additionally, a γ-decay branch is observed from a state at 5677.0(17) keV, which is assigned to a 1+ resonance important in the astrophysical reaction Al25(p,γ)Si26. The newly derived resonance energy, Er=159.2(35) keV, has the effect of decreasing the reaction rate at the novae ignition temperature of 0.1 GK by a factor of 2 when compared with the previous most precise measurement of this state
Level structure of 22Mg: Implications for the22Na(p, γ)22Mg astrophysical reaction rate and for the22Mg mass
The level structure of 22Mg has been studied with high-sensitivity γ-ray spectroscopy techniques. A complete level scheme is derived incorporating all subthreshold states and all levels in the energy region relevant for novae burning. The excitation energy of the most important astrophysical resonance is measured with improved accuracy and found to differ from previous values. Combining the present result with a recent resonance energy measurement of this state leads to a derived 22Mg mass excess of -400.5(13) keV
First identification of excited states in Ba 117 using the recoil- β -delayed proton tagging technique
Excited states have been observed for the first time in the neutron-deficient nucleus Ba117 using the recoil-decay tagging technique following the heavy-ion fusion-evaporation reaction Zn64(Ni58, 2p3n)Ba117. Prompt γ rays have been assigned to Ba117 through correlations with β-delayed protons following the decay of A=117 recoils. Through the analysis of the γ-γ coincidence relationships, a high-spin level scheme consisting of two bands has been established in Ba117. Based on the systematics of the level spacings in the neighboring barium isotopes, the two bands are proposed to have νh11/2[532]5/2- and νd5/2[413]5/2+ configurations, respectively. The observed band-crossing properties are interpreted in the framework of cranked shell model
- …
