1,022 research outputs found
‘You couldn’t finish the job without breaking the rules’: common sense safety on a large construction project
The role of cell-cell adhesion in wound healing
We present a stochastic model which describes fronts of cells invading a
wound. In the model cells can move, proliferate, and experience cell-cell
adhesion. We find several qualitatively different regimes of front motion and
analyze the transitions between them. Above a critical value of adhesion and
for small proliferation large isolated clusters are formed ahead of the front.
This is mapped onto the well-known ferromagnetic phase transition in the Ising
model. For large adhesion, and larger proliferation the clusters become
connected (at some fixed time). For adhesion below the critical value the
results are similar to our previous work which neglected adhesion. The results
are compared with experiments, and possible directions of future work are
proposed.Comment: to appear in Journal of Statistical Physic
Family perspectives on the feasibility of a corticosteroid induction regimen trial in juvenile idiopathic arthritis
The impacts of environmental warming on Odonata: a review
Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
Spatio-temporal Models of Lymphangiogenesis in Wound Healing
Several studies suggest that one possible cause of impaired wound healing is
failed or insufficient lymphangiogenesis, that is the formation of new
lymphatic capillaries. Although many mathematical models have been developed to
describe the formation of blood capillaries (angiogenesis), very few have been
proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a
markedly different process from angiogenesis, occurring at different times and
in response to different chemical stimuli. Two main hypotheses have been
proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the
edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic
endothelial cells first pool in the wound region following the lymph flow and
then, once sufficiently populated, start to form a network. Here we present two
PDE models describing lymphangiogenesis according to these two different
hypotheses. Further, we include the effect of advection due to interstitial
flow and lymph flow coming from open capillaries. The variables represent
different cell densities and growth factor concentrations, and where possible
the parameters are estimated from biological data. The models are then solved
numerically and the results are compared with the available biological
literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total
Effect of initial conditions on the speed of reaction-diffusion fronts
The effect of initial conditions on the speed of propagating fronts in reaction-diffusion equations is examined in the framework of the Hamilton-Jacobi theory. We study the transition between quenched and nonquenched fronts both analytically and numerically for parabolic and hyperbolic reaction diffusion. Nonhomogeneous media are also analyzed and the effect of algebraic initial conditions is also discussed
Evolution of cranial shape in a continental‐scale evolutionary radiation of Australian lizards
A defining character of adaptive radiations is the evolution of a diversity of morphological forms that are associated with the use of different habitats, following the invasion of vacant niches. Island adaptive radiations have been thoroughly investigated but continental scale radiations are more poorly understood. Here, we use 52 species of Australian agamid lizards and their Asian relatives as a model group, and employ three‐dimensional geometric morphometrics to characterize cranial morphology and investigate whether variation in cranial shape reflects patterns expected from the ecological process of adaptive radiation. Phylogenetic affinity, evolutionary allometry, and ecological life habit all play major roles in the evolution of cranial shape in the sampled lizards. We find a significant association between cranial shapes and life habit. Our results are in line with the expectations of an adaptive radiation, and this is the first time detailed geometric morphometric analyses have been used to understand the selective forces that drove an adaptive radiation at a continental scale
Ontogenetic allometry underlies trophic diversity in sea turtles (Chelonioidea)
Despite only comprising seven species, extant sea turtles (Cheloniidae and Dermochelyidae) display great ecological diversity, with most species inhabiting a unique dietary niche as adults. This adult diversity is remarkable given that all species share the same dietary niche as juveniles. These ontogenetic shifts in diet, as well as a dramatic increase in body size, make sea turtles an excellent group to examine how morphological diversity arises by allometric processes and life habit specialisation. Using three-dimensional geometric morphometrics, we characterise ontogenetic allometry in the skulls of all seven species and evaluate variation in the context of phylogenetic history and diet. Among the sample, the olive ridley (Lepidochelys olivacea) has a seemingly average sea turtle skull shape and generalised diet, whereas the green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) show different extremes of snout shape associated with their modes of food gathering (grazing vs. grasping, respectively). Our ontogenetic findings corroborate previous suggestions that the skull of the leatherback (Dermochelys coriacea) is paedomorphic, having similar skull proportions to hatchlings of other sea turtle species and retaining a hatchling-like diet of relatively soft bodied organisms. The flatback sea turtle (Natator depressus) shows a similar but less extreme pattern. By contrast, the loggerhead sea turtle (Caretta caretta) shows a peramorphic signal associated with increased jaw muscle volumes that allow predation on hard shelled prey. The Kemp’s ridley (Lepidochelys kempii) has a peramorphic skull shape compared to its sister species the olive ridley, and a diet that includes harder prey items such as crabs. We suggest that diet may be a significant factor in driving skull shape differences among species. Although the small number of species limits statistical power, differences among skull shape, size, and diet are consistent with the hypothesis that shifts in allometric trajectory facilitated diversification in skull shape as observed in an increasing number of vertebrate groups
Semicircular canal shape diversity among modern lepidosaurs: life habit, size, allometry
Background: The shape of the semicircular canals of the inner ear of living squamate reptiles has been used to infer phylogenetic relationships, body size, and life habits. Often these inferences are made without controlling for the effects of the other ones. Here we examine the semicircular canals of 94 species of extant limbed lepidosaurs using three-dimensional landmark-based geometric morphometrics, and analyze them in phylogenetic context to evaluate the relative contributions of life habit, size, and phylogeny on canal shape.
Result: Life habit is not a strong predictor of semicircular canal shape across this broad sample. Instead, phylogeny plays a major role in predicting shape, with strong phylogenetic signal in shape as well as size. Allometry has a limited role in canal shape, but inner ear size and body mass are strongly correlated.
Conclusions: Our wide sampling across limbed squamates suggests that semicircular canal shape and size are predominantly a factor of phylogenetic relatedness. Given the small proportion of variance in semicircular canal shape explained by life habit, it is unlikely that unknown life habit could be deduced from semicircular canal shape alone. Overall, semicircular canal size is a good estimator of body length and even better for body mass in limbed squamates. Semiaquatic taxa tend to be larger and heavier than non-aquatic taxa, but once body size and phylogeny are accounted for, they are hard to distinguish from their non-aquatic relatives based on bony labyrinth shape and morphology
- …
