156 research outputs found

    Interference quantum correction to conductivity of Al xGa 1-xAs/GaAs double quantum well heterostructures near the balance

    Full text link
    We present the results of experimental investigations of the interference quantum correction to the conductivity of the gated double quantum well Al xGa 1-xAs/GaAs/Al xGa 1-xAs heterostructures. Analyzing the positive magnetoconductiv-ity we obtain the interwell transition rate and the phase relaxation rate under the conditions when one and two quantum wells are occupied. It has been found that the interwell transition rate resonantly depends on the difference between the electron densities in the wells in accordance with the theoretical estimate. The central point, however, is that the dephasing rate in the lower quantum well is independent of whether the upper quantum well contributes to the conductivity or not. The results obtained are interpreted within framework of the recent theory for the dephasing and electron-electron interaction in the double well structures [Burmistrov I S, Gornyi I V and Tikhonov K S 2011 Phys. Rev. B 84 075338]

    Negative polarizability of 2D electrons in HgTe quantum well

    Full text link
    The polarizability of electrons occupying the lowest subband of spatial quantization in CdTe/Cdx_xHg1x_{1-x}Te/CdTe quantum wells is calculated. It is shown that polarizability in the quantum well without cadmium is negative, i.e., the displacement of an electron in an electric field applied perpendicularly to the quantum well plane is opposite to the force acting on it. The negative polarizability of 2D electrons can reduce the dielectric constant of quantum wells by up to (1015)(10-15) percent.Comment: 4 pages, 4 figure

    Two-dimensional semimetal in a wide HgTe quantum well: magnetotransport and energy spectrum

    Full text link
    The results of experimental study of the magnetoresistivity, the Hall and Shubnikov-de Haas effects for the heterostructure with HgTe quantum well of 20.2 nm width are reported. The measurements were performed on the gated samples over the wide range of electron and hole densities including vicinity of a charge neutrality point. Analyzing the data we conclude that the energy spectrum is drastically different from that calculated in framework of kPkP-model. So, the hole effective mass is equal to approximately 0.2m00.2 m_0 and practically independent of the quasimomentum (kk) up to k20.7×1012k^2\gtrsim 0.7\times 10^{12} cm2^{-2}, while the theory predicts negative (electron-like) effective mass up to k2=6×1012k^2=6\times 10^{12} cm2^{-2}. The experimental effective mass near k=0, where the hole energy spectrum is electron-like, is close to 0.005m0-0.005 m_0, whereas the theoretical value is about 0.1m0-0.1 m_0

    Weak antilocalization in quantum wells in tilted magnetic fields

    Full text link
    Weak antilocalization is studied in an InGaAs quantum well. Anomalous magnetoresistance is measured and described theoretically in fields perpendicular, tilted and parallel to the quantum well plane. Spin and phase relaxation times are found as functions of temperature and parallel field. It is demonstrated that spin dephasing is due to the Dresselhaus spin-orbit interaction. The values of electron spin splittings and spin relaxation times are found in the wide range of 2D density. Application of in-plane field is shown to destroy weak antilocalization due to competition of Zeeman and microroughness effects. Their relative contributions are separated, and the values of the in-plane electron g-factor and characteristic size of interface imperfections are found.Comment: 8 pages, 8 figure

    Non-monotonic magnetoresistance of two-dimensional electron systems in the ballistic regime

    Full text link
    We report experimental observations of a novel magnetoresistance (MR) behavior of two-dimensional electron systems in perpendicular magnetic field in the ballistic regime, for k_BT\tau/\hbar>1. The MR grows with field and exhibits a maximum at fields B>1/\mu, where \mu is the electron mobility. As temperature increases the magnitude of the maximum grows and its position moves to higher fields. This effect is universal: it is observed in various Si- and GaAs- based two-dimensional electron systems. We compared our data with recent theory based on the Kohn anomaly modification in magnetic field, and found qualitative similarities and discrepancies.Comment: 4 pages 3 figure
    corecore