103,684 research outputs found

    Effect of cluster scavenging on homogeneous nucleation

    Get PDF
    A closed‐form expression for the effect of cluster scavenging on the rate of homogeneous nucleation of a vapor in the presence of continuum regime particles is obtained by solving the kinetic equation of nucleation by the method of singular perturbation. The reduction in nucleation rate of a condensing species at a given supersaturation is shown to be dependent largely on the number concentration, the size of the sink particles, and the molecular number concentration of the background gas. The reduction in the rate of nucleation due to the cluster scavenging by transition regime particles is also discussed

    Homogeneous nucleation in spatially inhomogeneous systems

    Get PDF
    Homogeneous nucleation of a vapor in the presence of the loss of clusters by diffusion and thermophoretic drift is investigated. Analytical results are obtained for the cluster size distribution and the rate of nucleation by solving the modified kinetic equation for nucleation. The implications of cluster loss by diffusion and phoretic drift on the onset of the homogeneous nucleation of silicon vapor in the horizontal epitaxial chemical vapor deposition reactor is discussed. The range of conditions under which the loss of subcritical clusters by diffusion and drift becomes important for the interpretation of diffusion cloud chamber experimental data of the onset conditions of the homogeneous nucleation of vapors is also delineated

    Dust-Deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission

    Full text link
    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z<0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ~60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: 1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and 2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3-500 {\mu}m SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGN with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.Comment: minor corrections to match the published versio

    Two-photon transport through a waveguide coupling to a whispering gallery resonator containing an atom and photon-blockade effect

    Full text link
    We investigate the two-photon transport through a waveguide side-coupling to a whispering-gallery-atom system. Using the Lehmann-Symanzik-Zimmermann (LSZ) reduction approach, we present the general formula for the two-photon processes including the two-photon scattering matrices, the wavefunctions and the second order correlation functions of the out-going photons. Based on the exact results of the second order correlation functions, we analyze the quantum statistics behaviors of the out-going photons for two different cases: (a) the ideal case without the inter-modal coupling in the whispering gallery resonator; (b) the case in the presence of the inter-modal coupling which leads to more complex nonlinear behavior. In the ideal case, we show that the system consists of two independent scattering pathways, a free pathway by a cavity mode without atomic excitation, and a "Jaynes-Cummings" pathway described by the Jaynes-Cummings Hamiltonian of a single-mode cavity coupling to an atom. The free pathway does not contribution to correlated two-photon processes. In the presence of intermodal mixing, the system no longer exhibit a free resonant pathway. Instead, both the single-photon and the two photon transport properties depend on the position of the atom. Thus, in the presence of intermodal mixing one can in fact tune the photon correlation properties by changing the position of the atom. Our formalism can be used to treat resonator and cavity dissipation as well.Comment: 9 pages, 7 figure
    corecore