2,955 research outputs found

    Vertically-aligned graphene nanowalls grown via plasma-enhanced chemical vapor deposition as a binder-free cathode in Li-O_2 batteries

    Get PDF
    In the present report, vertically-aligned graphene nanowalls are grown on Ni foam (VA-G/NF) using plasma-enhanced chemical vapor deposition method at room temperature. Optimization of the growth conditions provides graphene sheets with controlled defect sites. The unique architecture of the vertically-aligned graphene sheets allows sufficient space for the ionic movement within the sheets and hence enhancing the catalytic activity. Further modification with ruthenium nanoparticles (Ru NPs) drop-casted on VA-G/NF improves the charge overpotential for lithium–oxygen (Li–O_2) battery cycles. Such reduction we believe is due to the easier passage of ions between the perpendicularly standing graphene sheets thereby providing ionic channels

    On the Adversarial Robustness of Vision Transformers

    Full text link
    Following the success in advancing natural language processing and understanding, transformers are expected to bring revolutionary changes to computer vision. This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations. Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs). This observation also holds for certified robustness. We summarize the following main observations contributing to the improved robustness of ViTs: 1) Features learned by ViTs contain less low-level information and are more generalizable, which contributes to superior robustness against adversarial perturbations. 2) Introducing convolutional or tokens-to-token blocks for learning low-level features in ViTs can improve classification accuracy but at the cost of adversarial robustness. 3) Increasing the proportion of transformers in the model structure (when the model consists of both transformer and CNN blocks) leads to better robustness. But for a pure transformer model, simply increasing the size or adding layers cannot guarantee a similar effect. 4) Pre-training on larger datasets does not significantly improve adversarial robustness though it is critical for training ViTs. 5) Adversarial training is also applicable to ViT for training robust models. Furthermore, feature visualization and frequency analysis are conducted for explanation. The results show that ViTs are less sensitive to high-frequency perturbations than CNNs and there is a high correlation between how well the model learns low-level features and its robustness against different frequency-based perturbations

    Patterns of primary care and mortality among patients with schizophrenia or diabetes: a cluster analysis approach to the retrospective study of healthcare utilization

    Get PDF
    Abstract Background Patients with schizophrenia have difficulty managing their medical healthcare needs, possibly resulting in delayed treatment and poor outcomes. We analyzed whether patients reduced primary care use over time, differentially by diagnosis with schizophrenia, diabetes, or both schizophrenia and diabetes. We also assessed whether such patterns of primary care use were a significant predictor of mortality over a 4-year period. Methods The Veterans Healthcare Administration (VA) is the largest integrated healthcare system in the United States. Administrative extracts of the VA's all-electronic medical records were studied. Patients over age 50 and diagnosed with schizophrenia in 2002 were age-matched 1:4 to diabetes patients. All patients were followed through 2005. Cluster analysis explored trajectories of primary care use. Proportional hazards regression modelled the impact of these primary care utilization trajectories on survival, controlling for demographic and clinical covariates. Results Patients comprised three diagnostic groups: diabetes only (n = 188,332), schizophrenia only (n = 40,109), and schizophrenia with diabetes (Scz-DM, n = 13,025). Cluster analysis revealed four distinct trajectories of primary care use: consistent over time, increasing over time, high and decreasing, low and decreasing. Patients with schizophrenia only were likely to have low-decreasing use (73% schizophrenia-only vs 54% Scz-DM vs 52% diabetes). Increasing use was least common among schizophrenia patients (4% vs 8% Scz-DM vs 7% diabetes) and was associated with improved survival. Low-decreasing primary care, compared to consistent use, was associated with shorter survival controlling for demographics and case-mix. The observational study was limited by reliance on administrative data. Conclusion Regular primary care and high levels of primary care were associated with better survival for patients with chronic illness, whether psychiatric or medical. For schizophrenia patients, with or without comorbid diabetes, primary care offers a survival benefit, suggesting that innovations in treatment retention targeting at-risk groups can offer significant promise of improving outcomes.http://deepblue.lib.umich.edu/bitstream/2027.42/78274/1/1472-6963-9-127.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78274/2/1472-6963-9-127.pdfPeer Reviewe

    VILAS: Exploring the Effects of Vision and Language Context in Automatic Speech Recognition

    Full text link
    Enhancing automatic speech recognition (ASR) performance by leveraging additional multimodal information has shown promising results in previous studies. However, most of these works have primarily focused on utilizing visual cues derived from human lip motions. In fact, context-dependent visual and linguistic cues can also benefit in many scenarios. In this paper, we first propose ViLaS (Vision and Language into Automatic Speech Recognition), a novel multimodal ASR model based on the continuous integrate-and-fire (CIF) mechanism, which can integrate visual and textual context simultaneously or separately, to facilitate speech recognition. Next, we introduce an effective training strategy that improves performance in modal-incomplete test scenarios. Then, to explore the effects of integrating vision and language, we create VSDial, a multimodal ASR dataset with multimodal context cues in both Chinese and English versions. Finally, empirical results are reported on the public Flickr8K and self-constructed VSDial datasets. We explore various cross-modal fusion schemes, analyze fine-grained crossmodal alignment on VSDial, and provide insights into the effects of integrating multimodal information on speech recognition.Comment: Accepted to ICASSP 202

    Complex Pathways to Cooperation Emergent from Asymmetry in Heterogeneous Populations

    Full text link
    Cooperation within asymmetric populations has garnered significant attention in evolutionary games. This paper explores cooperation evolution in populations with weak and strong players, using a game model where players choose between cooperation and defection. Asymmetry stems from different benefits for strong and weak cooperators, with their benefit ratio indicating the degree of asymmetry. Varied rankings of parameters including the asymmetry degree, cooperation costs, and benefits brought by weak players give rise to scenarios including the prisoner's dilemma (PDG) for both player types, the snowdrift game (SDG), and mixed PDG-SDG interactions. Our results indicate that in an infinite well-mixed population, defection remains the dominant strategy when strong players engage in the prisoner's dilemma game. However, if strong players play snowdrift games, global cooperation increases with the proportion of strong players. In this scenario, strong cooperators can prevail over strong defectors when the proportion of strong players is low, but the prevalence of cooperation among strong players decreases as their proportion increases. In contrast, within a square lattice, the optimum global cooperation emerges at intermediate proportions of strong players with moderate degrees of asymmetry. Additionally, weak players protect cooperative clusters from exploitation by strong defectors. This study highlights the complex dynamics of cooperation in asymmetric interactions, contributing to the theory of cooperation in asymmetric games.Comment: 10 pages, 8 figure

    AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens

    Full text link
    Jailbreak attacks in large language models (LLMs) entail inducing the models to generate content that breaches ethical and legal norm through the use of malicious prompts, posing a substantial threat to LLM security. Current strategies for jailbreak attack and defense often focus on optimizing locally within specific algorithmic frameworks, resulting in ineffective optimization and limited scalability. In this paper, we present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques, generalizing them to all possible attack surfaces. We employ directed acyclic graphs (DAGs) to position and analyze existing jailbreak attacks, defenses, and evaluation methodologies, and propose three comprehensive, automated, and logical frameworks. \texttt{AutoAttack} investigates dependencies in two lines of jailbreak optimization strategies: genetic algorithm (GA)-based attacks and adversarial-generation-based attacks, respectively. We then introduce an ensemble jailbreak attack to exploit these dependencies. \texttt{AutoDefense} offers a mixture-of-defenders approach by leveraging the dependency relationships in pre-generative and post-generative defense strategies. \texttt{AutoEvaluation} introduces a novel evaluation method that distinguishes hallucinations, which are often overlooked, from jailbreak attack and defense responses. Through extensive experiments, we demonstrate that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.Comment: 32 pages, 2 figure

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Vertically-aligned graphene nanowalls grown via plasma-enhanced chemical vapor deposition as a binder-free cathode in Li-O_2 batteries

    Get PDF
    In the present report, vertically-aligned graphene nanowalls are grown on Ni foam (VA-G/NF) using plasma-enhanced chemical vapor deposition method at room temperature. Optimization of the growth conditions provides graphene sheets with controlled defect sites. The unique architecture of the vertically-aligned graphene sheets allows sufficient space for the ionic movement within the sheets and hence enhancing the catalytic activity. Further modification with ruthenium nanoparticles (Ru NPs) drop-casted on VA-G/NF improves the charge overpotential for lithium–oxygen (Li–O_2) battery cycles. Such reduction we believe is due to the easier passage of ions between the perpendicularly standing graphene sheets thereby providing ionic channels

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    corecore