16,670 research outputs found
Recommended from our members
Macroeconomic Shocks, Job Security and Health: Evidence from the Mining Industry
How do exogenous changes in the macroeconomic environment affect workers’ perceived job security, and consequently, their mental and physical health? To answer this question, we exploit variation in world commodity prices over the period 2001-17 and analyse panel data that includes detailed classifications of mining workers. We find that commodity price increases cause increases in perceived job security, which in turn, significantly and substantively improve the mental health of workers. In contrast, we find no effects on physical health. Our results imply that the estimated welfare costs of recessions are much larger when the effects of job insecurity, and not only unemployment, are considered
Alfalfa Snout Beetle, \u3ci\u3eOtiorhynchus Ligustici\u3c/i\u3e L. (Coleoptera: Curculionidae): Methods for Egg Collection and Larval Rearing
The alfalfa snout beetle, Otiorhynchus ligustici L., is the most serious pest of alfalfa in northern New York State. Recent research efforts focused on the biological control of this insect require the availability of all life stages. With a 2-year lifecycle and a mandatory diapause, the artificial rearing of a laboratory culture appears to be a non-viable option at present, but methods described here can be used to obtain sufficient numbers of eggs and larvae over an extended period of time for research purposes. The crowding of adult beetles in egg production units (cups) had a significant, negative effect on egg production per beetle but the total egg production per cup was still higher with higher number of beetles per cup resulting in a significant saving of labor per egg produced. Larval survival rates in alfalfa-planted cans were surprisingly low given the protected conditions of the greenhouse. The larval survival rates were not significantly different among the dates for the second instar and later instars, suggesting that larval mortality occurs in the first instar in alfalfa-planted cans
Technology benefits and ground test facilities for high-speed civil transport development
The advanced technology base necessary for successful twenty-first century High-Speed Civil Transport (HSCT) aircraft will require extensive ground testing in aerodynamics, propulsion, acoustics, structures, materials, and other disciplines. This paper analyzes the benefits of advanced technology application to HSCT concepts, addresses the adequacy of existing groundbased test facilities, and explores the need for new facilities required to support HSCT development. A substantial amount of HSCT-related ground testing can be accomplished in existing facilities. The HSCT development effort could also benefit significantly from some new facilities initially conceived for testing in other aeronautical research areas. A new structures testing facility is identified as critically needed to insure timely technology maturation
Segmental aging underlies the development of a Parkinson phenotype in the AS/AGU rat
There is a paucity of information on the molecular biology of aging processes in the brain. We have used biomarkers of aging (SA β-Gal, p16Ink4a, Sirt5, Sirt6, and Sirt7) to demonstrate the presence of an accelerated aging phenotype across different brain regions in the AS/AGU rat, a spontaneous Parkinsonian mutant of PKCγ derived from a parental AS strain. P16INK4a expression was significantly higher in AS/AGU animals compared to age-matched AS controls (p < 0.001) and displayed segmental expression across various brain regions. The age-related expression of sirtuins similarly showed differences between strains and between brain regions. Our data clearly show segmental aging processes within the rat brain, and that these are accelerated in the AS/AGU mutant. The accelerated aging, Parkinsonian phenotype, and disruption to dopamine signalling in the basal ganglia in AS/AGU rats, suggests that this rat strain represents a useful model for studies of development and progression of Parkinson's disease in the context of biological aging and may offer unique mechanistic insights into the biology of aging
Recommended from our members
Mild acute stress improves response speed without impairing accuracy or interference control in two selective attention tasks: Implications for theories of stress and cognition.
Acute stress is generally thought to impair performance on tasks thought to rely on selective attention. This effect has been well established for moderate to severe stressors, but no study has examined how a mild stressor-the most common type of stressor-influences selective attention. In addition, no study to date has examined how stress influences the component processes involved in overall selective attention task performance, such as controlled attention, automatic attentional activation, decision-making, and motor abilities. To address these issues, we randomly assigned 107 participants to a mild acute stress or control condition. As expected, the mild acute stress condition showed a small but significant increase in cortisol relative to the control condition. Following the stressor, we assessed attention with two separate flanker tasks. One of these tasks was optimized to investigate component attentional processes using computational cognitive modeling, whereas the other task employed mouse-tracking to illustrate how response conflict unfolded over time. The results for both tasks showed that mild acute stress decreased response time (i.e., increased response speed) without influencing accuracy or interference control. Further, computational modeling and mouse-tracking analyses indicated that these effects were due to faster motor action execution time for chosen actions. Intriguingly, however, cortisol responses were unrelated to any of the observed effects of mild stress. These results have implications for theories of stress and cognition, and highlight the importance of considering motor processes in understanding the effects of stress on cognitive task performance
- …
