939 research outputs found
A Comparison of the Trojan Y Chromosome Strategy to Harvesting Models for Eradication of Non-Native Species
The Trojan Y Chromosome Strategy (TYC) is a promising eradication method for
biological control of non-native species. The strategy works by manipulating
the sex ratio of a population through the introduction of \textit{supermales}
that guarantee male offspring. In the current manuscript, we compare the TYC
method with a pure harvesting strategy. We also analyze a hybrid harvesting
model that mirrors the TYC strategy. The dynamic analysis leads to results on
stability, global boundedness of solutions and bifurcations of the model.
Several conclusions about the different strategies are established via optimal
control methods. In particular, the results affirm that either a pure
harvesting or hybrid strategy may work better than the TYC method at
controlling an invasive species population.Comment: 37 pages, 11 figure
The Evolutionary Origin of the Runx/CBFbeta Transcription Factors – Studies of the Most Basal Metazoans
BACKGROUND. Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFβ, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals. RESULTS. In this study, we detect and characterize the hitherto unexplored Runx/CBFβ genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity. Comparative structural modeling indicates that the Runx-CBFβ-DNA complex from most cnidarians and sponges is highly similar to that found in humans, with changes in the residues involved in Runx-CBFβ dimerization in either of the proteins mirrored by compensatory changes in the binding partner. In situ hybridization studies reveal that Nematostella Runx and CBFβ are expressed predominantly in small isolated foci at the base of the ectoderm of the tentacles in adult animals, possibly representing neurons or their progenitors. CONCLUSION. These results reveal that Runx and CBFβ likely functioned together to regulate transcription in the common ancestor of all metazoans, and the structure of the Runx-CBFβ-DNA complex has remained extremely conserved since the human-sponge divergence. The expression data suggest a hypothesis that these genes may have played a role in nerve cell differentiation or maintenance in the common ancestor of cnidarians and bilaterians.National Science Foundation (IBN-0212773, FP-91656101-0); Boston University SPRInG (20-202-8103-9); Israel Science Foundation (825/07
Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy
Chloroplast microsatellites have been widely used in population genetic
studies of conifers in recent years. However, their haplotype configurations
suggest that they could have high levels of homoplasy, thus limiting the power
of these molecular markers. A coalescent-based computer simulation was used to
explore the influence of homoplasy on measures of genetic diversity based on
chloroplast microsatellites. The conditions of the simulation were defined to
fit isolated populations originating from the colonization of one single
haplotype into an area left available after a glacial retreat. Simulated data
were compared with empirical data available from the literature for a species
of Pinus that has expanded north after the Last Glacial Maximum. In the
evaluation of genetic diversity, homoplasy was found to have little influence
on Nei's unbiased haplotype diversity (H(E)) while Goldstein's genetic distance
estimates (D2sh) were much more affected. The effect of the number of
chloroplast microsatellite loci for evaluation of genetic diversity is also
discussed
Spatiotemporal complexity of a ratio-dependent predator-prey system
In this paper, we investigate the emergence of a ratio-dependent
predator-prey system with Michaelis-Menten-type functional response and
reaction-diffusion. We derive the conditions for Hopf, Turing and Wave
bifurcation on a spatial domain. Furthermore, we present a theoretical analysis
of evolutionary processes that involves organisms distribution and their
interaction of spatially distributed population with local diffusion. The
results of numerical simulations reveal that the typical dynamics of population
density variation is the formation of isolated groups, i.e., stripelike or
spotted or coexistence of both. Our study shows that the spatially extended
model has not only more complex dynamic patterns in the space, but also chaos
and spiral waves. It may help us better understand the dynamics of an aquatic
community in a real marine environment.Comment: 6pages, revtex
Deleting species from model food webs
We use food webs generated by a model to investigate the effects of deleting
species on other species in the web and on the web as a whole. The model
incorporates a realistic population dynamics, adaptive foragers and other
features which allow for the construction of model webs which resemble
empirical food webs. A large number of simulations were carried out to produce
a substantial number of model webs on which deletion experiments could be
performed. We deleted each species in four hundred distinct model webs and
determined, on average, how many species were eliminated from the web as a
result. Typically only a small number of species became extinct; in no instance
was the web close to collapse. Next, we examined how the the probability of
extinction of a species depended on its relationship with the deleted species.
This involved the exploration of the concept of indirect predator and prey
species and the extent that the probability of extinction depended on the
trophic level of the two species. The effect of deletions on the web itself was
studied by searching for keystone species, whose removal caused a major
restructuring of the community, and also by looking at the correlation between
a number of food web properties (number of species, linkage density, fraction
of omnivores, degree of cycling and redundancy) and the stability of the web to
deletions. With the exception of redundancy, we found little or no correlation.
In particular, we found no evidence that complexity in terms of increased
species number or links per species is destabilising.Comment: 30 pages, 9 figure
Evaluating range-expansion models for calculating nonnative species' expansion rate
Species range shifts associated with environmental change or biological invasions are increasingly important study areas. However, quantifying range expansion rates may be heavily influenced by methodology and/or sampling bias. We compared expansion rate estimates of Roesel's bush-cricket (Metrioptera roeselii, Hagenbach 1822), a nonnative species currently expanding its range in south-central Sweden, from range statistic models based on distance measures (mean, median, 95th gamma quantile, marginal mean, maximum, and conditional maximum) and an area-based method (grid occupancy). We used sampling simulations to determine the sensitivity of the different methods to incomplete sampling across the species' range. For periods when we had comprehensive survey data, range expansion estimates clustered into two groups: (1) those calculated from range margin statistics (gamma, marginal mean, maximum, and conditional maximum: similar to 3 km/year), and (2) those calculated from the central tendency (mean and median) and the area-based method of grid occupancy (similar to 1.5 km/year). Range statistic measures differed greatly in their sensitivity to sampling effort; the proportion of sampling required to achieve an estimate within 10% of the true value ranged from 0.17 to 0.9. Grid occupancy and median were most sensitive to sampling effort, and the maximum and gamma quantile the least. If periods with incomplete sampling were included in the range expansion calculations, this generally lowered the estimates (range 16-72%), with exception of the gamma quantile that was slightly higher (6%). Care should be taken when interpreting rate expansion estimates from data sampled from only a fraction of the full distribution. Methods based on the central tendency will give rates approximately half that of methods based on the range margin. The gamma quantile method appears to be the most robust to incomplete sampling bias and should be considered as the method of choice when sampling the entire distribution is not possible
Pulsating fronts for nonlocal dispersion and KPP nonlinearity
In this paper we are interested in propagation phenomena for nonlocal
reaction-diffusion equations of the type: , where J is a probability density and f is a KPP
nonlinearity periodic in the x variables. Under suitable assumptions we
establish the existence of pulsating fronts describing the invasion of the 0
state by a heterogeneous state. We also give a variational characterization of
the minimal speed of such pulsating fronts and exponential bounds on the
asymptotic behavior of the solution.Comment: Annales de l'Institut Henri Poincar\'e Analyse non lin\'eaire (2011
Class of self-limiting growth models in the presence of nonlinear diffusion
The source term in a reaction-diffusion system, in general, does not involve
explicit time dependence. A class of self-limiting growth models dealing with
animal and tumor growth and bacterial population in a culture, on the other
hand are described by kinetics with explicit functions of time. We analyze a
reaction-diffusion system to study the propagation of spatial front for these
models.Comment: RevTex, 13 pages, 5 figures. To appear in Physical Review
Stratified dispersal and increasing genetic variation during the invasion of Central Europe by the western corn rootworm, Diabrotica virgifera virgifera
Invasive species provide opportunities for investigating evolutionary aspects of colonization processes, including initial foundations of populations and geographic expansion. Using microsatellite markers and historical information, we characterized the genetic patterns of the invasion of the western corn rootworm (WCR), a pest of corn crops, in its largest area of expansion in Europe: Central and South-Eastern (CSE) Europe. We found that the invaded area probably corresponds to a single expanding population resulting from a single introduction of WCR and that gene flow is geographically limited within the population. In contrast to what is expected in classical colonization processes, an increase in genetic variation was observed from the center to the edge of the outbreak. Control measures against WCR at the center of the outbreak may have decreased effective population size in this area which could explain this observed pattern of genetic variation. We also found that small remote outbreaks in southern Germany and north-eastern Italy most likely originated from long-distance dispersal events from CSE Europe. We conclude that the large European outbreak is expanding by stratified dispersal, involving both continuous diffusion and discontinuous long-distance dispersal. This latter mode of dispersal may accelerate the expansion of WCR in Europe in the future
Range expansion of an invasive species through a heterogeneous landscape - the case of American mink in Scotland
ACKNOWLEDGEMENTS We would like to thank Scottish Natural Heritage, particularly Iain Macleod and Rob Raynor, for data and funding.We are grateful to the Game and Wildlife Conservation Trust, especially Jonathan Reynolds, Vincent Wildlife Trust and Scottish Mink Initiative for supplying data of mink presence and to the Centre for Ecology and Hydrology for the Land Cover Map data. XL acknowledges support from NERC grant NE/J01396X/1Peer reviewedPublisher PD
- …
