588 research outputs found

    Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. A Tutorial

    Full text link
    A new computational technique based on the symbolic description utilizing kneading invariants is proposed and verified for explorations of dynamical and parametric chaos in a few exemplary systems with the Lorenz attractor. The technique allows for uncovering the stunning complexity and universality of bi-parametric structures and detect their organizing centers - codimension-two T-points and separating saddles in the kneading-based scans of the iconic Lorenz equation from hydrodynamics, a normal model from mathematics, and a laser model from nonlinear optics.Comment: Journal of Bifurcations and Chaos, 201

    Models of Multifunctional Central Pattern Generators: Polyrhythmic Bursting

    Get PDF
    We demonstrate a motif of three reciprocally inhibitory cells that is able to produce multiple patterns of bursting rhythms. Through the examination of the qualitative geometric structure of two-dimensional maps for phase lag between the cells we reveal the organizing centers of emergent polyrhythmic patterns and their bifurcations, as the asymmetry of the synaptic coupling is varied. The presence of multistability and the types of attractors in the network are shown to be determined by the duty cycle of bursting. This analysis does not require knowledge of the equations that model the system, and so provides a powerful new approach to studying regulatory networks. Thus, the approach is applicable to a variety of biological phenomena beyond motor control

    Subthreshold oscillations in a map-based neuron model

    Full text link
    Self-sustained subthreshold oscillations in a discrete-time model of neuronal behavior are considered. We discuss bifurcation scenarios explaining the birth of these oscillations and their transformation into tonic spikes. Specific features of these transitions caused by the discrete-time dynamics of the model and the influence of external noise are discussed.Comment: To be published in Physics Letters

    Symbolic Toolkit for Chaos Explorations

    Full text link
    New computational technique based on the symbolic description utilizing kneading invariants is used for explorations of parametric chaos in a two exemplary systems with the Lorenz attractor: a normal model from mathematics, and a laser model from nonlinear optics. The technique allows for uncovering the stunning complexity and universality of the patterns discovered in the bi-parametric scans of the given models and detects their organizing centers -- codimension-two T-points and separating saddles.Comment: International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012
    corecore