2,745 research outputs found
Electronic structure of YbB: Is it a Topological Insulator or not?
To resolve the controversial issue of the topological nature of the
electronic structure of YbB, we have made a combined study using density
functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES).
Accurate determination of the low energy band topology in DFT requires the use
of modified Becke-Johnson exchange potential incorporating the spin-orbit
coupling and the on-site Coulomb interaction of Yb electrons as large
as 7 eV. We have double-checked the DFT result with the more precise GW band
calculation. ARPES is done with the non-polar (110) surface termination to
avoid band bending and quantum well confinement that have confused ARPES
spectra taken on the polar (001) surface termination. Thereby we show
definitively that YbB has a topologically trivial B 2-Yb 5
semiconductor band gap, and hence is a non-Kondo non-topological insulator
(TI). In agreement with theory, ARPES shows pure divalency for Yb and a -
band gap of 0.3 eV, which clearly rules out both of the previous scenarios of
- band inversion Kondo TI and - band inversion non-Kondo TI. We
have also examined the pressure-dependent electronic structure of YbB,
and found that the high pressure phase is not a Kondo TI but a
\emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary
information contains 6 figures. 11 pages, 10 figures in total To be appeared
in Phys. Rev. Lett. (Online publication is around March 16 if no delays.
Electronic structures of ZnCoO using photoemission and x-ray absorption spectroscopy
Electronic structures of ZnCoO have been investigated using
photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The
Co 3d states are found to lie near the top of the O valence band, with a
peak around eV binding energy. The Co XAS spectrum provides
evidence that the Co ions in ZnCoO are in the divalent Co
() states under the tetrahedral symmetry. Our finding indicates that the
properly substituted Co ions for Zn sites will not produce the diluted
ferromagnetic semiconductor property.Comment: 3 pages, 2 figure
The mechanical relaxation study of polycrystalline MgCNi3
The mechanical relaxation spectra of a superconducting and a
non-superconducting MgCNi3 samples were measured from liquid nitrogen
temperature to room temperature at frequency of kilohertz. There are two
internal friction peaks (at 300 K labeled as P1 and 125 K as P2) for the
superconducting sample. For the non-superconducting one, the position of P1
shifts to 250 K, while P2 is almost completely depressed. It is found that the
peak position of P2 shifts towards higher temperature under higher measuring
frequency. The calculated activation energy is 0.13eV. We propose an
explanation relating P2 to the carbon atom jumping among the off-center
positions. And further we expect that the behaviors of carbon atoms maybe
correspond to the normal state crossovers around 150 K and 50 K observed by
many other experiments.Comment: 4 figure
Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal
We report on the response of a high light-output NaI(Tl) crystal to nuclear
recoils induced by neutrons from an Am-Be source and compare the results with
the response to electron recoils produced by Compton scattered 662 keV
-rays from a Cs source. The measured pulse-shape discrimination
(PSD) power of the NaI(Tl) crystal is found to be significantly improved
because of the high light output of the NaI(Tl) detector. We quantify the PSD
power with a quality factor and estimate the sensitivity to the interaction
rate for weakly interacting massive particles (WIMPs) with nucleons, and the
result is compared with the annual modulation amplitude observed by the
DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon
interactions based on 100 kgyear of data from NaI detectors is estimated
with simulated experiments, using the standard halo model.Comment: 11page
Quantum internet using code division multiple access
A crucial open problem in large-scale quantum networks is how to efficiently
transmit quantum data among many pairs of users via a common data-transmission
medium. We propose a solution by developing a quantum code division multiple
access (q-CDMA) approach in which quantum information is chaotically encoded to
spread its spectral content, and then decoded via chaos synchronization to
separate different sender-receiver pairs. In comparison to other existing
approaches, such as frequency division multiple access (FDMA), the proposed
q-CDMA can greatly increase the information rates per channel used, especially
for very noisy quantum channels.Comment: 29 pages, 6 figure
The WFC3 Infrared Spectroscopic Parallel (WISP) Survey
We present the WFC3 Infrared Spectroscopic Parallel (WISP) Survey. WISP is
obtaining slitless, near-infrared grism spectroscopy of ~ 90 independent,
high-latitude fields by observing in the pure parallel mode with Wide Field
Camera-3 on the Hubble Space Telescope for a total of ~ 250 orbits. Spectra are
obtained with the G102 (lambda=0.8-1.17 microns, R ~ 210) and G141 grisms
(lambda=1.11-1.67 microns, R ~ 130), together with direct imaging in the J- and
H-bands (F110W and F140W, respectively). In the present paper, we present the
first results from 19 WISP fields, covering approximately 63 square arc
minutes. For typical exposure times (~ 6400 sec in G102 and ~ 2700 sec in
G141), we reach 5-sigma detection limits for emission lines of 5 x 10^(-17)
ergs s^(-1) cm^(-2) for compact objects. Typical direct imaging 5sigma-limits
are 26.8 and 25.0 magnitudes (AB) in F110W and F140W, respectively. Restricting
ourselves to the lines measured with highest confidence, we present a list of
328 emission lines, in 229 objects, in a redshift range 0.3 < z < 3. The
single-line emitters are likely to be a mix of Halpha and [OIII]5007,4959 A,
with Halpha predominating. The overall surface density of high-confidence
emission-line objects in our sample is approximately 4 per arcmin^(2).These
first fields show high equivalent width sources, AGN, and post starburst
galaxies. The median observed star formation rate of our Halpha selected sample
is 4 Msol/year. At intermediate redshifts, we detect emission lines in galaxies
as faint as H_140 ~ 25, or M_R < -19, and are sensitive to star formation rates
down to less than 1 Msol/year. The slitless grisms on WFC3 provide a unique
opportunity to study the spectral properties of galaxies much fainter than L*
at the peak of the galaxy assembly epoch.Comment: 15 pages, 12 figures, submitted to Ap
Bulk-sensitive photoemission spectroscopy of A_2FeMoO_6 double perovskites (A=Sr, Ba)
Electronic structures of Sr_2FeMoO_6 (SFMO) and Ba_2FeMoO_6 (BFMO) double
perovskites have been investigated using the Fe 2p->3d resonant photoemission
spectroscopy (PES) and the Cooper minimum in the Mo 4d photoionization cross
section. The states close to the Fermi level are found to have strongly mixed
Mo-Fe t_{2g} character, suggesting that the Fe valence is far from pure 3+. The
Fe 2p_{3/2} XAS spectra indicate the mixed-valent Fe^{3+}-Fe^{2+}
configurations, and the larger Fe^{2+} component for BFMO than for SFMO,
suggesting a kind of double exchange interaction. The valence-band PES spectra
reveal good agreement with the LSDA+U calculation.Comment: 4 pages, 3 figure
Explicit CP violation in the Dine-Seiberg-Thomas model
The possibility of explicit CP violation is studied in a supersymmetric model
proposed by Dine, Seiberg, and Thomas, with two effective dimension-five
operators. The explicit CP violation may be triggered by complex phases in the
coefficients for the dimension-five operators in the Higgs potential, and by a
complex phase in the scalar top quark masses. Although the scenario of explicit
CP violation is found to be inconsistent with the experimental data at LEP2 at
the tree level, it may be possible at the one-loop level. For a reasonable
parameter space, the masses of the neutral Higgs bosons and their couplings to
a pair of bosons are consistent with the LEP2 data, at the one-loop level.Comment: 5 pages, 2 figure
A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles
In recent years, there has been a dramatic increase in the use of unmanned
aerial vehicles (UAVs), particularly for small UAVs, due to their affordable
prices, ease of availability, and ease of operability. Existing and future
applications of UAVs include remote surveillance and monitoring, relief
operations, package delivery, and communication backhaul infrastructure.
Additionally, UAVs are envisioned as an important component of 5G wireless
technology and beyond. The unique application scenarios for UAVs necessitate
accurate air-to-ground (AG) propagation channel models for designing and
evaluating UAV communication links for control/non-payload as well as payload
data transmissions. These AG propagation models have not been investigated in
detail when compared to terrestrial propagation models. In this paper, a
comprehensive survey is provided on available AG channel measurement campaigns,
large and small scale fading channel models, their limitations, and future
research directions for UAV communication scenarios
Band Calculations for Ce Compounds with AuCu-type Crystal Structure on the basis of Dynamical Mean Field Theory I. CePd and CeRh
Band calculations for Ce compounds with the AuCu-type crystal structure
were carried out on the basis of dynamical mean field theory (DMFT). The
auxiliary impurity problem was solved by a method named NCAvc
(noncrossing approximation including the state as a vertex correction).
The calculations take into account the crystal-field splitting, the spin-orbit
interaction, and the correct exchange process of the virtual excitation. These are necessary features in the
quantitative band theory for Ce compounds and in the calculation of their
excitation spectra. The results of applying the calculation to CePd and
CeRh are presented as the first in a series of papers. The experimental
results of the photoemission spectrum (PES), the inverse PES, the
angle-resolved PES, and the magnetic excitation spectra were reasonably
reproduced by the first-principles DMFT band calculation. At low temperatures,
the Fermi surface (FS) structure of CePd is similar to that of the band
obtained by the local density approximation. It gradually changes into a form
that is similar to the FS of LaPd as the temperature increases, since the
band shifts to the high-energy side and the lifetime broadening becomes
large.}Comment: 12 pasges, 13 figure
- …
