2,322 research outputs found

    i2MapReduce: Incremental MapReduce for Mining Evolving Big Data

    Full text link
    As new data and updates are constantly arriving, the results of data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. In this paper, we propose i2MapReduce, a novel incremental processing extension to MapReduce, the most widely used framework for mining big data. Compared with the state-of-the-art work on Incoop, i2MapReduce (i) performs key-value pair level incremental processing rather than task level re-computation, (ii) supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and (iii) incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. We evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics. Experimental results on Amazon EC2 show significant performance improvements of i2MapReduce compared to both plain and iterative MapReduce performing re-computation

    Modeling tools and prototype design of loop heat pipe for electronics cooling

    Get PDF
    Title from PDF of title page (University of Missouri--Columbia, viewed on Sept 10, 2010).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Dissertation advisor: Dr. James E. Bryan.Vita.Ph. D. University of Missouri--Columbia 2009.In this dissertation, a set of modeling tools for loop heat pipe (LHP) design is developed, and original analytical models for annular two-phase flow are proposed. LHPs are promising two-phase thermal transport devices for electronics cooling. The developed modeling tools include a system level model, criteria of selecting working fluids, and individual component models for modularized design of LHP condenser and evaporator. Based on these tools, new figures of merit for measuring capillary limit and heat leak effects are defined, the condensation pressure drop is shown to be always dominating the loop pressure drop in air-cooled LHPs, and a published LHP prototype for laptop computer cooling is simulated. The modeling results agree well with the available experimental data and reveal that the air flow is the bottleneck of this prototype. The analytical models for annular two-phase flow presented in this work is fundamentally different from the previous two-phase flow models in that both the velocity and temperature distributions for the liquid and gas/vapor phases are represented based on the governing equations for laminar flows and based on the universal profiles for turbulent flows. As a result, analytical relations of void fraction, frictional pressure gradient, acceleration pressure gradient, and heat transfer coefficient for all possible flow regimes are derived on a self-contained and self-consistent basis, with the classical single-phase relations as their extreme limits. Detailed comparison with the modeling results shows that the prevailing empirical correlations in engineering practice generally fail to provide reliable and accurate predictions for annular two-phase flows.Includes bibliographical reference

    Dynamics of social contagions with local trend imitation

    Get PDF
    Research on social contagion dynamics has not yet including a theoretical analysis of the ubiquitous local trend imitation (LTI) characteristic. We propose a social contagion model with a tent-like adoption probability distribution to investigate the effect of this LTI characteristic on behavior spreading. We also propose a generalized edge-based compartmental theory to describe the proposed model. Through extensive numerical simulations and theoretical analyses, we find a crossover in the phase transition: when the LTI capacity is strong, the growth of the final behavior adoption size exhibits a second-order phase transition. When the LTI capacity is weak, we see a first-order phase transition. For a given behavioral information transmission probability, there is an optimal LTI capacity that maximizes the final behavior adoption size. Finally we find that the above phenomena are not qualitatively affected by the heterogeneous degree distribution. Our suggested theory agrees with the simulation results.Comment: 14 pages, 5 figure

    Dispersing Points on Intervals

    Get PDF
    We consider a problem of dispersing points on disjoint intervals on a line. Given n pairwise disjoint intervals sorted on a line, we want to find a point in each interval such that the minimum pairwise distance of these points is maximized. Based on a greedy strategy, we present a linear time algorithm for the problem. Further, we also solve in linear time the cycle version of the problem where the intervals are given on a cycle

    Interferon regulatory factor 7- (IRF7-) mediated immune response affects Newcastle disease virus replication in chicken embryo fibroblasts

    Get PDF
    Interferon regulatory factor 7 (IRF7) is essential for the induction of an antiviral response. Previous studies have shown that virus replication causes the activation or expression of Type I interferon (IFN) in cells, which further activates IFN-stimulated genes (ISGs) to retard virus growth. In this study, after infection of chicken embryo fibroblasts (CEFs) with the lentogenic Newcastle disease virus (NDV) strain LaSota or the velogenic NDV strain GM, the mRNA and protein levels of IRF7 showed a significant increase, and part of the IRF7 protein was translocated from the cytoplasm to the nucleus. In order to further explore the effect of IRF7-mediated innate immune response on the replication of NDV in CEFs, the mRNA levels of IFN-α, IFN-β and STAT1 were measured and the replication kinetics of NDV determined. The results showed that specific siRNA could inhibit the expression of IRF7 and limit the mRNA level of IFN-α, IFN-β and STAT1 and, accordingly, the replication kinetics of both NDVs were enhanced after the inhibition of IRF7. In conclusion, IRF7 is an important nuclear transcription factor for the induction of Type I IFNs during the antiviral response, which can affect the replication of NDV and spread to CEFs in the early phase of viral infection
    corecore