1,434 research outputs found
Long-Range Excitons in Optical Absorption Spectra of Electroluminescent Polymer Poly(para-phenylenevinylene)
The component of photoexcited states with large spatial extent is
investigated for poly(para-phenylenevinylene) using the intermediate exciton
theory. We find a peak due to long-range excitons at the higher-energy side of
the lowest main feature of optical spectra. The fact that the onset of
long-range excitons is located near the energy gap is related to the mechanisms
of large photocurrents measured in such energy regions. We show that a large
value of the hopping integral is realistic for characterizing optical
excitations.Comment: To be published in J. Phys. Soc. Jpn. (Letters
Theoretical study on novel electronic properties in nanographite materials
Antiferromagnetism in stacked nanographite is investigated with using the
Hubbard-type model. We find that the open shell electronic structure can be an
origin of the decreasing magnetic moment with the decrease of the
inter-graphene distance, as experiments on adsorption of molecules suggest.
Next, possible charge-separated states are considered using the extended
Hubbard model with nearest-neighbor interactions. The charge-polarized state
could appear, when a static electric field is present in the graphene plane for
example. Finally, superperiodic patterns with a long distance in a nanographene
sheet observed by STM are discussed in terms of the interference of electronic
wave functions with a static linear potential theoretically. In the analysis by
the k-p model, the oscillation period decreases spatially in agreement with
experiments.Comment: 8 pages; 6 figures; accepted for publication in J. Phys. Chem.
Solids; related Web site: http://staff.aist.go.jp/k.harigaya/index_E.htm
Nickel(II) complexes bearing a pincer ligand containing thioamide units: Comparison between SNS- and SCS-pincer ligands
journal articl
Electron spin resonance and electron nuclear double resonance of photogenerated polarons in polyfluorene and its fullerene composite
journal articl
Flat-band ferromagnetism induced by off-site repulsions
Density matrix renormalization group method is used to analyze how the
nearest-neighbor repulsion V added to the Hubbard model on 1D triangular
lattice and a railway trestle (t-t') model will affect the electron-correlation
dominated ferromagnetism arising from the interference (frustration). Obtained
phase diagram shows that there is a region in smaller-t' side where the
critical on-site repulsion above which the system becomes ferromagnetic is
reduced when the off-site repulsion is introduced.Comment: 4 pages, RevTex, 6 figures in Postscript, to be published in Phys.
Rev.
- …
