1,360 research outputs found
TGF-beta(2)- and H2O2-Induced Biological Changes in Optic Nerve Head Astrocytes Are Reduced by the Antioxidant Alpha-Lipoic Acid
Background/Aims: The goal of the present study was to determine whether transforming growth factor-beta(2) (TGF-beta(2))- and oxidative stress-induced cellular changes in cultured human optic nerve head (ONH) astrocytes could be reduced by pretreatment with the antioxidant alpha-lipoic acid (LA). Methods: Cultured ONH astrocytes were treated with 1.0 ng/ml TGF-beta(2) for 24 h or 200 mu M hydrogen peroxide (H2O2) for 1 h. Lipid peroxidation was measured by a decrease in cis-pari-naric acid fluorescence. Additionally, cells were pretreated with different concentrations of LA before TGF-beta 2 or H2O2 exposure. Expressions of the heat shock protein (Hsp) alpha B-crystallin and Hsp27, the extracellular matrix (ECM) component fibronectin and the ECM-modulating protein connective tissue growth factor (CTGF) were examined with immunohistochemistry and real-time PCR analysis. Results: Both TGF-beta(2) and H2O2 increased lipid peroxidation. Treatment of astrocytes with TGF-beta(2) and H2O2 upregulated the expression of alpha B-crystallin, Hsp27, fibronectin and CTGF. Pretreatment with different concentrations of LA reduced the TGF-beta(2)- and H2O2-stimulated gene expressions. Conclusion: We showed that TGF-beta(2)- and H2O2-stimulated gene expressions could be prevented by pretreatment with the antioxidant LA in cultured human ONH astrocytes. Therefore, it is tempting to speculate that the use of antioxidants could have protective effects in glaucomatous optic neuropathy. Copyright (C) 2012 S. Karger AG, Base
A ferroelectric memristor
Memristors are continuously tunable resistors that emulate synapses.
Conceptualized in the 1970s, they traditionally operate by voltage-induced
displacements of matter, but the mechanism remains controversial. Purely
electronic memristors have recently emerged based on well-established physical
phenomena with albeit modest resistance changes. Here we demonstrate that
voltage-controlled domain configurations in ferroelectric tunnel barriers yield
memristive behaviour with resistance variations exceeding two orders of
magnitude and a 10 ns operation speed. Using models of ferroelectric-domain
nucleation and growth we explain the quasi-continuous resistance variations and
derive a simple analytical expression for the memristive effect. Our results
suggest new opportunities for ferroelectrics as the hardware basis of future
neuromorphic computational architectures
Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications
A systematic study was conducted into the use of metal-assisted chemical etching (MacEtch) to fabricate vertical Si microwire arrays, with several models being studied for the efficient redox reaction of reactants with silicon through a metal catalyst by varying such parameters as the thickness and morphology of the metal film. By optimizing the MacEtch conditions, high-quality vertical Si microwires were successfully fabricated with lengths of up to 23.2 mu m, which, when applied in a solar cell, achieved a conversion efficiency of up to 13.0%. These solar cells also exhibited an open-circuit voltage of 547.7 mV, a short-circuit current density of 33.2 mA/cm(2), and a fill factor of 71.3% by virtue of the enhanced light absorption and effective carrier collection provided by the Si microwires. The use of MacEtch to fabricate high-quality Si microwires therefore presents a unique opportunity to develop cost-effective and highly efficient solar cells.open1
Proinflammatory genotype is associated with the frailty phenotype in the English Longitudinal Study of Ageing
Background: Frailty is a state of increased vulnerability to poor resolution of homeostasis after a stressor event, which increases the risk of adverse outcomes including falls, disability and death. The underlying pathophysiological pathways of frailty are not known but the hypothalamic–pituitary–adrenal axis and heightened chronic systemic inflammation appear to be major contributors. Methods: We used the English Longitudinal Study of Ageing dataset of 3160 individuals over the age of 50 and assessed their frailty status according to the Fried-criteria. We selected single nucleotide polymorphisms in genes involved in the steroid hormone or inflammatory pathways and performed linear association analysis using age and sex as covariates. To support the biological plausibility of any genetic associations, we selected biomarker levels for further analyses to act as potential endophenotypes of our chosen genetic loci. Results: The strongest association with frailty was observed in the Tumor Necrosis Factor (TNF) (rs1800629, P = 0.001198, β = 0.0894) and the Protein Tyrosine Phosphatase, Receptor type, J (PTPRJ) (rs1566729, P = 0.001372, β = 0.09397) genes. Rs1800629 was significantly associated with decreased levels of high-density lipoprotein (HDL) (P = 0.00949) and cholesterol levels (P = 0.00315), whereas rs1566729 was associated with increased levels of HDL (P = 0.01943). After correcting for multiple testing none of the associations remained significant. Conclusions: We provide potential evidence for the involvement of a multifunctional proinflammatory cytokine gene (TNF) in the frailty phenotype. The implication of this gene is further supported by association with the endophenotype biomarker results
Simulation of gait asymmetry and energy transfer efficiency between unilateral and bilateral amputees
Efficient walking or running requires symmetrical
gait. Gait symmetry is one of the key factors in efficient
human dynamics, kinematics and kinetics. The desire of individuals with a lower-limb amputation to participate
in sports has resulted in the development of energy-storing and-returning (ESR) feet. This paper analyses a case study
to show the effect of symmetry and asymmetry as well as
energy transfer efficiency during periodic jumping between
simulated bilateral and unilateral runners. A custom gait
analysis system is developed as part of this project to track the motion of the body of a physically active subject during a set of predefined motions. Stance and aerial times are accurately measured using a high speed camera. Gait frequency, the level of symmetry and the non-uniform displacement between left and right foot and their effects on the position of the Centre of Mass (CM) were used as
criteria to calculate both peak energies and transformation
efficiency. Gait asymmetry and discrepancy of energy
transfer efficiency between the intact foot and the ESR are
observed. It is concluded that unilateral runners require
excessive effort to compensate for lack of symmetry as well as asymmetry in energy transfer, causing fatigue which could be a reason why bilateral amputee runners using ESR feet have a superior advantage over unilateral amputees
Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes
The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users
Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films
An increasing interest in bio-hybrid systems and cell-material interactions is evident in the last years. This leads towards the development of new nano-structured devices and the assessment of their biocompatibility. In the present study, the development of free-standing single layer poly(lactic acid) (PLA) ultra-thin films is described, together with the analysis of topography and roughness properties. The biocompatibility of the PLA films has been tested in vitro, by seeding C2C12 skeletal muscle cells, and thus assessing cells shape, density and viability after 24, 48 and 72 h. The results show that free-standing flexible PLA nanofilms represent a good matrix for C2C12 cells adhesion, spreading and proliferation. Early differentiation into myotubes is also allowed. The biocompatibility of the novel ultra-thin films as substrates for cell growth promotes their application in the fields of regenerative medicine, muscle tissue engineering, drug delivery, and-in general-in the field of bio-hybrid devices
Recommended from our members
The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35◦ AGCM
The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world’s population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200 to 40 km at the equator (N96 to N512, 1.9 to 0.35◦). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution related processes cause these changes we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts
SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State
SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1) in ESCs, the related POU family member BRN2 (Pou3f2) co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors
Nicotine exposure and transgenerational impact: a prospective study on small regulatory microRNAs
Early developmental stages are highly sensitive to stress and it has been reported that pre-conditioning with tobacco smoking during adolescence predisposes those youngsters to become smokers as adults. However, the molecular mechanisms of nicotine-induced transgenerational consequences are unknown. In this study, we genome-widely investigated the impact of nicotine exposure on small regulatory microRNAs (miRNAs) and its implication on health disorders at a transgenerational aspect. Our results demonstrate that nicotine exposure, even at the low dose, affected the global expression profiles of miRNAs not only in the treated worms (F0 parent generation) but also in two subsequent generations (F1 and F2, children and grandchildren). Some miRNAs were commonly affected by nicotine across two or more generations while others were specific to one. The general miRNA patterns followed a “two-hit� model as a function of nicotine exposure and abstinence. Target prediction and pathway enrichment analyses showed daf-4, daf-1, fos-1, cmk-1, and unc-30 to be potential effectors of nicotine addiction. These genes are involved in physiological states and phenotypes that paralleled previously published nicotine induced behavior. Our study offered new insights and further awareness on the transgenerational effects of nicotine exposed during the vulnerable post-embryonic stages, and identified new biomarkers for nicotine addiction.ECU Open Access Publishing Support Fun
- …
