7,367 research outputs found

    A Micro-Machined Microphone Based on a Combination of Electret and Field-Effect Transistor

    Get PDF
    Capacitive-type transduction is now widely used in MEMS microphones. However, its sensitivity decreases with reducing size, due to decreasing air gap capacitance. In the present study, we proposed and developed the Electret Gate of Field Effect Transistor (ElGoFET) transduction based on an electret and FET (field-effect-transistor) as a novel mechanism of MEMS microphone transduction. The ElGoFET transduction has the advantage that the sensitivity is dependent on the ratio of capacitance components in the transduction structure. Hence, ElGoFET transduction has high sensitivity even with a smaller air gap capacitance, due to a miniaturization of the transducer. A FET with a floating-gate electrode embedded on a membrane was designed and fabricated and an electret was fabricated by ion implantation with Ga+ ions. During the assembly process between the FET and the electret, the operating point of the FET was characterized using the static response of the FET induced by the electric field due to the trapped positive charge at the electret. Additionally, we evaluated the microphone performance of the ElGoFET by measuring the acoustic response in air using a semi-anechoic room. The results confirmed that the proposed transduction mechanism has potential for microphone applications.open1132Ysciescopu

    Reliability Evaluation considering Structures of a Large Scale Wind Farm

    Get PDF
    Wind energy is one of the most widely used renewable energy resources. Wind power has been connected to the grid as large scale wind farm which is made up of dozens of wind turbines, and the scale of wind farm is more increased recently. Due to intermittent and variable wind source, reliability evaluation on wind farm is necessarily required. Also, because large scale offshore wind farm has a long repair time and a high repair cost as well as a high investment cost, it is essential to take into account the economic aspect. One of methods to efficiently build and to operate wind farm is to construct wind farm which is able to enhance a capability of delivering a power instead of controlling an uncontrollable output of wind power. Therefore, this paper introduces a method to evaluate the reliability depending upon structures of wind farm and to reflect the result to the planning stage of wind farm

    A screen-printed carbon electrode modified with a chitosan-based film for in situ heavy metal ions measurement

    Full text link
    SEM images and FTIR data of the working electrode surface showed that Mn+ ions were adsorbed on chitosan (Chit) and crosslinked chitosan-carbon nanotube (Chit-CNT) films. XPS revealed that chelation of Mn+ ions with the –NH2/–OH groups from chitosan, –COOH group from carbon nanotubes, and aqua ligands represents a possible structure of the active Mn+ species in the Chit-based film. The electrochemical behaviors of the Chit-based film modified screen-printed carbon electrode (SPCE) were characterized for individual and simultaneous detection of Cu2+, Pb2+, Hg2+, Zn2+, Cd2+, and As3+ ions. For individual detection, the concentration range was 0.50–3.00 ppm with a detection limit of 0.4 ppm for Cu2+; 1.0–4.0 ppm with a detection limit of 0.5 ppm for Pb2+; 1.0–5.0 ppm with a detection limit of 0.8 ppm for Hg2+. For simultaneous detection, the lab chip sensor was successfully used to determine the concentrations of Pb2+, Cu2+, Hg2+, and As3+ ions simultaneously

    Mid-term results in patients having tricuspidization of the quadricuspid aortic valve

    Get PDF
    BACKGROUND: Quadricuspid aortic valve (QAV) is a rare congenital anomaly. We investigate the mid-term results of aortic valve reconstruction by tricuspidization in patients with QAV. METHODS: We analyzed the outcome of eight consecutive patients who underwent aortic valve reconstruction surgery (AVRS) with pericardial leaflets with symptomatic quadricuspid aortic valve (QAV) disease between December 2007 and May 2012. AVRS consists of leaflet reconstruction and fixation of the sino-tubular junction in order to maintain coaptation of the new valve. RESULTS: Six males and two females were included; ages ranged from 19 to 63 years (mean age, 51 years). According to Hurwitz and Roberts’s classification, three patients had type A, three patients had type B, one patient had type C, and one patient had type E. All patients had significant aortic regurgitation (AR): moderate in three patients, moderate to severe in one patient, and severe in four patients. Concomitant ascending aorta wrapping with an artificial vascular graft was performed in one case. There was no occurrence of mortality during the follow-up period (42.4 ± 18.0 months). No redo-operation was required. The NYHA functional class showed improvement from 2.1 ± 0.2 to 1.1 ± 0.2 (p = 0.008). The latest echocardiograms showed AR absent or trivial in seven patients, and mild in one patient. The aortic valve orifice area index (AVAI) was 1.03 ± 0.49 cm(2)/m(2). Compared with preoperative echocardiograms, the left ventricular (LV) ejection fraction showed improvement from 57.6 ± 17.0 to 63.7 ± 13.2% (p = 0.036); the end-diastolic and end-systolic LV dimensions showed a significant decrease, from 63.5 ± 9.6 to 49.5 ± 3.1 mm (p = 0.012) and 43.6 ± 11.8 to 32.1 ± 5.4 mm (p = 0.012), respectively. CONCLUSION: In patients with QAV, AVRS with tricuspidization showed satisfactory early and mid-term results. Long-term follow-up will be necessary in order to study the durability of AVRS; however, it can be considered as a potential standard procedure

    L-Asparaginase delivered by Salmonella typhimurium suppresses solid tumors

    Get PDF
    Bacteria can be engineered to deliver anticancer proteins to tumors via a controlled expression system that maximizes the concentration of the therapeutic agent in the tumor. L-asparaginase (L-ASNase), which primarily converts asparagine to aspartate, is an anticancer protein used to treat acute lymphoblastic leukemia. In this study, Salmonellae were engineered to express L-ASNase selectively within tumor tissues using the inducible araBAD promoter system of Escherichia coli. Antitumor efficacy of the engineered bacteria was demonstrated in vivo in solid malignancies. This result demonstrates the merit of bacteria as cancer drug delivery vehicles to administer cancer-starving proteins such as L-ASNase to be effective selectively within the microenvironment of cancer tissue

    Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells

    Get PDF
    The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.111311Ysciescopu

    Optical Lattices: Theory

    Full text link
    This chapter presents an overview of the properties of a Bose-Einstein condensate (BEC) trapped in a periodic potential. This system has attracted a wide interest in the last years, and a few excellent reviews of the field have already appeared in the literature (see, for instance, [1-3] and references therein). For this reason, and because of the huge amount of published results, we do not pretend here to be comprehensive, but we will be content to provide a flavor of the richness of this subject, together with some useful references. On the other hand, there are good reasons for our effort. Probably, the most significant is that BEC in periodic potentials is a truly interdisciplinary problem, with obvious connections with electrons in crystal lattices, polarons and photons in optical fibers. Moreover, the BEC experimentalists have reached such a high level of accuracy to create in the lab, so to speak, paradigmatic Hamiltonians, which were first introduced as idealized theoretical models to study, among others, dynamical instabilities or quantum phase transitions.Comment: Chapter 13 in Part VIII: "Optical Lattices" of "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer Series on Atomic, Optical, and Plasma Physics, 2007) - pages 247-26

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
    corecore