13,178 research outputs found
Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate.
Type IIA topoisomerases (Top2s) manipulate the handedness of DNA crossovers by introducing a transient and protein-linked double-strand break in one DNA duplex, termed the DNA-gate, whose opening allows another DNA segment to be transported through to change the DNA topology. Despite the central importance of this gate-opening event to Top2 function, the DNA-gate in all reported structures of Top2-DNA complexes is in the closed state. Here we present the crystal structure of a human Top2 DNA-gate in an open conformation, which not only reveals structural characteristics of its DNA-conducting path, but also uncovers unexpected yet functionally significant conformational changes associated with gate-opening. This structure further implicates Top2's preference for a left-handed DNA braid and allows the construction of a model representing the initial entry of another DNA duplex into the DNA-gate. Steered molecular dynamics calculations suggests the Top2-catalyzed DNA passage may be achieved by a rocker-switch-type movement of the DNA-gate
New fermions on the line in topological symmorphic metals
Topological metals and semimetals (TMs) have recently drawn significant
interest. These materials give rise to condensed matter realizations of many
important concepts in high-energy physics, leading to wide-ranging protected
properties in transport and spectroscopic experiments. The most studied TMs,
i.e., Weyl and Dirac semimetals, feature quasiparticles that are direct
analogues of the textbook elementary particles. Moreover, the TMs known so far
can be characterized based on the dimensionality of the band crossing. While
Weyl and Dirac semimetals feature zero-dimensional points, the band crossing of
nodal-line semimetals forms a one-dimensional closed loop. In this paper, we
identify a TM which breaks the above paradigms. Firstly, the TM features
triply-degenerate band crossing in a symmorphic lattice, hence realizing
emergent fermionic quasiparticles not present in quantum field theory.
Secondly, the band crossing is neither 0D nor 1D. Instead, it consists of two
isolated triply-degenerate nodes interconnected by multi-segments of lines with
two-fold degeneracy. We present materials candidates. We further show that
triplydegenerate band crossings in symmorphic crystals give rise to a Landau
level spectrum distinct from the known TMs, suggesting novel magneto-transport
responses. Our results open the door for realizing new topological phenomena
and fermions including transport anomalies and spectroscopic responses in
metallic crystals with nontrivial topology beyond the Weyl/Dirac paradigm.Comment: 24 pages, 4 figures, and 1 tabl
Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases
Electrospun polyaniline (PAni) fibers doped with different levels of (+)-camphor-10-sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60-fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time-dependent reaction-diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract ARO W911NF-07-D-0004
- …
