20 research outputs found
Recommended from our members
Alterations in Brain-Derived Neurotrophic Factor in the Mouse Hippocampus Following Acute but Not Repeated Benzodiazepine Treatment
Benzodiazepines (BZs) are safe drugs for treating anxiety, sleep, and seizure disorders, but their use also results in unwanted effects including memory impairment, abuse, and dependence. The present study aimed to reveal the molecular mechanisms that may contribute to the effects of BZs in the hippocampus (HIP), an area involved in drug-related plasticity, by investigating the regulation of immediate early genes following BZ administration. Previous studies have demonstrated that both brain derived neurotrophic factor (BDNF) and c-Fos contribute to memory- and abuse-related processes that occur within the HIP, and their expression is altered in response to BZ exposure. In the current study, mice received acute or repeated administration of BZs and HIP tissue was analyzed for alterations in BDNF and c-Fos expression. Although no significant changes in BDNF or c-Fos were observed in response to twice-daily intraperitoneal (i.p.) injections of diazepam (10 mg/kg + 5 mg/kg) or zolpidem (ZP; 2.5 mg/kg + 2.5 mg/kg), acute i.p. administration of both triazolam (0.03 mg/kg) and ZP (1.0 mg/kg) decreased BDNF protein levels within the HIP relative to vehicle, without any effect on c-Fos. ZP specifically reduced exon IV-containing BDNF transcripts with a concomitant increase in the association of methyl-CpG binding protein 2 (MeCP2) with BDNF promoter IV, suggesting that MeCP2 activity at this promoter may represent a ZP-specific mechanism for reducing BDNF expression. ZP also increased the association of phosphorylated cAMP response element binding protein (pCREB) with BDNF promoter I. Future work should examine the interaction between ZP and DNA as the cause for altered gene expression in the HIP, given that BZs can enter the nucleus and intercalate into DNA directly
GABAA receptor subtype involvement in addictive behaviour
GABAA receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarise the evidence that variations in genes encoding GABAA receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABAA receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarise the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABAA Receptor Subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour
Recommended from our members
Neuroadaptations and Behavioral Profiles Associated with Cocaine Self-Administration in Rhesus Monkeys (Macaca Mulatta)
Cocaine abuse and addiction are widespread problems with profound medical and socioeconomic consequences. At present, the neurobiological adaptations associated with short- and long-term cocaine abuse are not well understood, which contributes to the lack of availability of broadly effective treatments for this type of addiction. Recently, some studies have implicated GABAA receptor subtypes in the neuroadaptations underlying addiction. To explore the contributions of GABAA receptors to the neurobiological basis of cocaine abuse, we utilized a non-human primate model of cocaine self-administration and examined changes in species typical behaviors, and corresponding alterations in three GABAA receptor subtypes within five reward-related areas of the brain. Sixteen rhesus monkeys either self-administered cocaine intravenously (1-hr/day, 0.03 mg/kg/injection of cocaine) or received passive infusions of saline yoked to the cocaine injections (yoked control). Monkeys either self-administered cocaine for ~10 days (short-term group) or ~100 days (long-term group). Twenty-four hours after the last session, animals were sacrificed and brains were removed. We examined alterations in α1, α2, and α3 subunit-containing GABAA receptors (α1, α2, and α3GABAA receptors) using immunohistochemistry (IHC), in situ hybridization (ISH), and real-time PCR experiments (RTPCR) within reward-related areas of the brain including the nucleus accumbens, ventral tegmental area, caudate, putamen, and anterior vi cingulate cortex. Long-term cocaine taking animals self-administered cocaine in a cyclical pattern, and increased number of cocaine injections taken within the initial portion of daily self-administration sessions. We observed behavioral alterations in behaviors including locomotor, stereotypic, scratching and affiliative behaviors. IHC results demonstrated alterations in α1GABAA receptors within all regions of interest after long-term self-administration. After short-term cocaine self-administration decreases in α3GABAA receptors were observed in all regions examined. When examining transcript levels using ISH and RTPCR, we found relatively few changes in comparison to protein alterations. The notable change was a decrease of all three receptor mRNAs within the anterior cingulate cortex after short-term cocaine exposure. The present model of drug may expand our understanding of addiction-related behaviors and the role of GABA in addiction. Furthermore, our findings suggest GABAA receptors may serve as viable targets for pharmacotherapeutic approaches to treat addiction.Neuroscience and BehaviorDoctor of Philosophy (PhD
Differential alteration in α3-containing GABAA receptors after long-term cocaine self-administration in rhesus monkeys
Unbiased gene profiling of the rhesus macaque mesolimbic system following long-term cocaine self-administration
Transcriptomic profiling of the ventral tegmental area and nucleus accumbens in rhesus macaques following long-term cocaine self-administration
Alterations in Brain-Derived Neurotrophic Factor in the Mouse Hippocampus Following Acute but Not Repeated Benzodiazepine Treatment
Benzodiazepines (BZs) are safe drugs for treating anxiety, sleep, and seizure disorders, but their use also results in unwanted effects including memory impairment, abuse, and dependence. The present study aimed to reveal the molecular mechanisms that may contribute to the effects of BZs in the hippocampus (HIP), an area involved in drug-related plasticity, by investigating the regulation of immediate early genes following BZ administration. Previous studies have demonstrated that both brain derived neurotrophic factor (BDNF) and c-Fos contribute to memory- and abuse-related processes that occur within the HIP, and their expression is altered in response to BZ exposure. In the current study, mice received acute or repeated administration of BZs and HIP tissue was analyzed for alterations in BDNF and c-Fos expression. Although no significant changes in BDNF or c-Fos were observed in response to twice-daily intraperitoneal (i.p.) injections of diazepam (10 mg/kg + 5 mg/kg) or zolpidem (ZP; 2.5 mg/kg + 2.5 mg/kg), acute i.p. administration of both triazolam (0.03 mg/kg) and ZP (1.0 mg/kg) decreased BDNF protein levels within the HIP relative to vehicle, without any effect on c-Fos. ZP specifically reduced exon IV-containing BDNF transcripts with a concomitant increase in the association of methyl-CpG binding protein 2 (MeCP2) with BDNF promoter IV, suggesting that MeCP2 activity at this promoter may represent a ZP-specific mechanism for reducing BDNF expression. ZP also increased the association of phosphorylated cAMP response element binding protein (pCREB) with BDNF promoter I. Future work should examine the interaction between ZP and DNA as the cause for altered gene expression in the HIP, given that BZs can enter the nucleus and intercalate into DNA directly
pCREB levels in the HIP following acute BZ treatment.
<p>(A) There is no change in total pCREB protein levels in the HIP following BZ treatment as measured by western blots (n= 4); (B) There is a significant increase in pCREB association with BDNF promoter I in the HIP following ZP treatment as measured by ChIP (n= 5-7). * <i>p</i>< 0.05; IDV: integrated density values.</p
BDNF exon IV-containing transcript is decreased following acute ZP treatment.
<p>There is a selective and significant decrease in BDNF exon IV-containing transcript following ZP treatment compared to VEH in the HIP (n= 4-7). ** <i>p</i> < 0.01. </p
