883 research outputs found
Mechanical properties of Pt monatomic chains
The mechanical properties of platinum monatomic chains were investigated by
simultaneous measurement of an effective stiffness and the conductance using
our newly developed mechanically controllable break junction (MCBJ) technique
with a tuning fork as a force sensor. When stretching a monatomic contact
(two-atom chain), the stiffness and conductance increases at the early stage of
stretching and then decreases just before breaking, which is attributed to a
transition of the chain configuration and bond weakening. A statistical
analysis was made to investigate the mechanical properties of monatomic chains.
The average stiffness shows minima at the peak positions of the
length-histogram. From this result we conclude that the peaks in the
length-histogram are a measure of the number of atoms in the chains, and that
the chains break from a strained state. Additionally, we find that the smaller
the initial stiffness of the chain is, the longer the chain becomes. This shows
that softer chains can be stretched longer.Comment: 6 pages, 5 figure
Numerical Investigation of a Coronal Mass Ejection from an Anemone Active Region: Reconnection and Deflection of the 2005 August 22 Eruption
We present a numerical investigation of the coronal evolution of a coronal
mass ejection (CME) on 2005 August 22 using a 3-D thermodynamics
magnetohydrodynamic model, the SWMF. The source region of the eruption was
anemone active region (AR) 10798, which emerged inside a coronal hole. We
validate our modeled corona by producing synthetic extreme ultraviolet (EUV)
images, which we compare to EIT images. We initiate the CME with an
out-of-equilibrium flux rope with an orientation and chirality chosen in
agreement with observations of a H-alpha filament. During the eruption, one
footpoint of the flux rope reconnects with streamer magnetic field lines and
with open field lines from the adjacent coronal hole. It yields an eruption
which has a mix of closed and open twisted field lines due to interchange
reconnection and only one footpoint line-tied to the source region. Even with
the large-scale reconnection, we find no evidence of strong rotation of the CME
as it propagates. We study the CME deflection and find that the effect of the
Lorentz force is a deflection of the CME by about 3 deg/Rsun towards the East
during the first 30 minutes of the propagation. We also produce coronagraphic
and EUV images of the CME, which we compare with real images, identifying a
dimming region associated with the reconnection process. We discuss the
implication of our results for the arrival at Earth of CMEs originating from
the limb and for models to explain the presence of open field lines in magnetic
clouds.Comment: 14 pages, 8 Figures, accepted to Astrophysical Journa
A Symmetric Generalization of Linear B\"acklund Transformation associated with the Hirota Bilinear Difference Equation
The Hirota bilinear difference equation is generalized to discrete space of
arbitrary dimension. Solutions to the nonlinear difference equations can be
obtained via B\"acklund transformation of the corresponding linear problems.Comment: Latex, 12 pages, 1 figur
From Hurwitz numbers to Kontsevich-Witten tau-function: a connection by Virasoro operators
In this letter,we present our conjecture on the connection between the
Kontsevich--Witten and the Hurwitz tau-functions. The conjectural formula
connects these two tau-functions by means of the group element. An
important feature of this group element is its simplicity: this is a group
element of the Virasoro subalgebra of . If proved, this conjecture
would allow to derive the Virasoro constraints for the Hurwitz tau-function,
which remain unknown in spite of existence of several matrix model
representations, as well as to give an integrable operator description of the
Kontsevich--Witten tau-function.Comment: 13 page
Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy
It is shown that the integrable discrete Schwarzian KP (dSKP) equation which
constitutes an algebraic superposition formula associated with, for instance,
the Schwarzian KP hierarchy, the classical Darboux transformation and
quasi-conformal mappings encapsulates nothing but a fundamental theorem of
ancient Greek geometry. Thus, it is demonstrated that the connection with
Menelaus' theorem and, more generally, Clifford configurations renders the dSKP
equation a natural object of inversive geometry on the plane. The geometric and
algebraic integrability of dSKP lattices and their reductions to lattices of
Menelaus-Darboux, Schwarzian KdV, Schwarzian Boussinesq and Schramm type is
discussed. The dSKP and discrete Schwarzian Boussinesq equations are shown to
represent discretizations of families of quasi-conformal mappings.Comment: 26 pages, 9 figure
Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity
Volatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by
alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var.
cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging
from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4).
All encoded proteins, except Cm-AAT2, were enzymatically active upon expression in yeast and show
differential substrate preferences. Cm-AAT1 protein produces a wide range of short and long-chain acyl
esters but has strong preference for the formation of E-2-hexenyl acetate and hexyl hexanoate. Cm-AAT3
also accepts a wide range of substrates but with very strong preference for producing benzyl acetate.
Cm-AAT4 is almost exclusively devoted to the formation of acetates, with strong preference for cinnamoyl
acetate. Site directed mutagenesis demonstrated that the failure of Cm-AAT2 to produce volatile esters is
related to the presence of a 268-alanine residue instead of threonine as in all active AAT proteins. Mutating
268-A into 268-T of Cm-AAT2 restored enzyme activity, while mutating 268-T into 268-A abolished
activity of Cm-AAT1. Activities of all three proteins measured with the prefered substrates sharply increase
during fruit ripening. The expression of all Cm-AAT genes is up-regulated during ripening and inhibited in
antisense ACC oxidase melons and in fruit treated with the ethylene antagonist 1-methylcyclopropene
(1-MCP), indicating a positive regulation by ethylene. The data presented in this work suggest that the
multiplicity of AAT genes accounts for the great diversity of esters formed in melon
The effect of nonstoichiometry and polarity of the (111) plane on microtwin formation in ion-implanted GaAs
- …
