862 research outputs found

    The Convex Closure of the Output Entropy of Infinite Dimensional Channels and the Additivity Problem

    Get PDF
    The continuity properties of the convex closure of the output entropy of infinite dimensional channels and their applications to the additivity problem are considered. The main result of this paper is the statement that the superadditivity of the convex closure of the output entropy for all finite dimensional channels implies the superadditivity of the convex closure of the output entropy for all infinite dimensional channels, which provides the analogous statements for the strong superadditivity of the EoF and for the additivity of the minimal output entropy. The above result also provides infinite dimensional generalization of Shor's theorem stated equivalence of different additivity properties. The superadditivity of the convex closure of the output entropy (and hence the additivity of the minimal output entropy) for two infinite dimensional channels with one of them a direct sum of noiseless and entanglement-breaking channels are derived from the corresponding finite dimensional results. In the context of the additivity problem some observations concerning complementary infinite dimensional channels are considered.Comment: 24 page

    Energy-constrained diamond norms and their use in quantum information theory

    Full text link
    We consider the family of energy-constrained diamond norms on the set of Hermitian-preserving linear maps (superoperators) between Banach spaces of trace class operators. We prove that any norm from this family generates the strong (pointwise) convergence on the set of all quantum channels (which is more adequate for describing variations of infinite-dimensional channels than the diamond norm topology). We obtain continuity bounds for information characteristics (in particular, classical capacities) of energy-constrained quantum channels (as functions of a channel) with respect to the energy-constrained diamond norms which imply uniform continuity of these characteristics with respect to the strong convergence topology.Comment: 21 pages, any comments are welcome, in v.2 minor corrections and improvements are mad
    corecore