21 research outputs found
Bacterial Isolation and Evaluation for Degradation of Unpretreated LDPE from Waste Dump Soils
Plastic pollution is a universal problem, and microbial management of plastic waste represents a promising area of biotechnological research. This study investigated the ability of bacterial strains which were isolated from landfill soil to degrade Low-Density Polyethylene (LDPE). Strains obtained via serial dilution were screened for LDPE degradation on Minimal Essential Medium (MEM) with hexadecane. Nine isolates producing clearance zones on hexadecane-supplemented MEM were further tested for biofilm formation on LDPE sheets. High cell surface hydrophobicity isolates (>10%) were selected for detailed biodegradation studies. The C-8 bacterial isolate showed the highest LDPE weight loss (3.57%) and exhibited maximum laccase (0.0219 U/mL) and lipase activity (19 mm) among all bacterial isolates after 30 days. Weight loss was further validated by FTIR and SEM analysis. FTIR analysis revealed that in comparison to control, changes in peak were observed at 719 cm-1 (C-H bending), 875.67 cm-1 (C-C vibrations), 1307.07 cm-1 (C-O stretching), 1464.21 cm-1 (C-H bending), 2000-1650 cm-1 (C-H bending), 2849.85 cm-1 (C-H stretching) in microbial treated LDPE sheets. The treated LDPE also displayed increase in carbonyl index (upto 2.5 to 3 folds), double bond index (1 to 2-fold) and internal double bond index (2 to 2.5-fold) indicating oxidation and chain scission in the LDPE backbone. SEM analysis showed substantial micrometric surface damage on the LDPE film, with visible cracks and grooves. Using 16S rRNA gene sequencing, the C-8, C-11, C-15 and C-19 isolate were identified as Bacillus paramycoides, Micrococcus luteus, Bacillus siamensis and Lysinibacillus capsica, respectively
Microplastic Accumulation and Degradation in Environment via Biotechnological Approaches
The extensive use of plastics in daily life has led to the generation of huge amounts of plastic waste, which causes an enormous burden on the environment. More than half of the plastic waste ends up in the landfill, and about one-fifth of waste is managed by incineration. Only about one-tenth of plastic waste is recycled, and the rest, about one-fifth of mismanaged plastic waste, ends up in the terrestrial and aquatic environment. Here, we review how the deterioration of plastics leads to the formation of microplastics and nanoplastics, which are now found abundantly and are contaminating aquatic life and water bodies. It observed that increasing experimental evidence provides data about the presence of these microplastics in food items, terrestrial environment, and even the human body. The harmful effects of microplastics on human health still need to be substantiated with more precise experimental studies. However, measures can be taken to reduce the production of microplastics by improving the methods used for plastic degradation. This review focuses on the use of genetic engineering, genome editing, synthetic biology, and system biology approaches to increase the potential of microorganisms to degrade plastics
Alternative Fuels for Agriculture Sustainability: Carbon Footprint and Economic Feasibility
Agriculture is the foremost source of food for humans. Fossil fuels are typically used to operate farm machines, contributing to carbon emissions and accelerating climate change. It is possible to mitigate environmental damage by promoting renewable or alternative fuels, namely biofuels, solar energy, biomass, wind, geothermal, small-scale hydro, and wave power. Biofuels are considered as low carbon-emitting alternatives to conventional fuels. The use of biofuels promotes reduced emissions of greenhouse gases and reduces the related detrimental impact of transport. As an alternative to fossil fuels, renewable fuels seem to present a promising scenario. However, if low carbon products are promoted, analysis of each particular product’s GHG emissions and carbon footprint (CF) is needed. Nowadays, CF is considered as the prime indicator of environmental impact, and its calculation is in utmost demand. Agriculture significantly benefits from the use of renewable resources. The carbon footprint measurement has the potential to assess and compare carbon emissions generated by agricultural products and to identify points for improving environmental performance. Several studies have compared alternative fuels with conventional fuels, and it has been proven that using alternative fuels can significantly reduce traditional fuel consumption. Bioenergy includes a number of socio- economic, technical as well as environmental benefits that helps in achieving the UN sustainable development goals (SDG). The aim to end malnutrition and hunger (SDG 2) requires a sustainable system for food production as well as resilient agriculture practices to improve agricultural productivity. The revenues from bioenergy projects can provide food and a better diet for small farming communities, thereby improving their quality of life. The present review aims to provide a comprehensive outlook of the role of alternative or biofuels in the agriculture sector, in terms of economic feasibility and carbon footprint, for sustainable development. This review also discusses the various generations of biofuels in attaining carbon neutrality, biofuel’s impact on the environment, applications in agriculture, and limitations
De novo transcriptome profiling revealing genes involved in piperine biosynthetic pathway in Piper longum L
Abstract Piper longum, commonly known as long pepper, is highly valued for its bioactive alkaloid piperine, which has diverse pharmaceutical and culinary applications. In this study, we used high-throughput sequencing and de novo transcriptome assembly to analyze the transcriptomes of P. longum leaves, roots, and spikes. Our dataset consisted of 173,381 high-quality transcripts, with functional annotations highlighting key pathways involved in lysine biosynthesis and secondary metabolite production. We identified 8041 simple sequence repeats (SSRs), primarily trinucleotide repeats, adding valuable genetic markers. Additionally, we uncovered 21,235 transcription factors (TFs) across 65 families, including bHLH, NAC, and MYB, which are essential in regulating metabolism. KEGG pathway analysis categorized 4730 transcripts into 377 pathways, focusing on piperine biosynthesis, including phenylpropanoid and L-lysine metabolism. Our research identified 14 expressed genes encoding enzymes crucial for tropane, piperidine, and pyridine alkaloid biosynthesis, shedding light on piperine production mechanisms. High-performance liquid chromatography (HPLC) revealed varying piperine concentrations, with spikes showing the highest content, followed by roots and leaves. This comprehensive analysis of the P. longum transcriptome offers valuable insights into the genetics and regulatory networks underlying piperine biosynthesis, identifying molecular markers and genes that hold significant potential for enhancing the plant’s biological and pharmaceutical applications
Effect of Organic and Inorganic Nitrogen Management and Planting Technique on Yield of Maize
The experiment was set up at the Dr. Khem Singh Gill Akal College of Agriculture's experimental farm chhapang at the Eternal University in Baru Sahib during 2019–20 to assess the impact of organic and inorganic nitrogen management and planting technique on maize yield. The experiment was designed as a split plot with a total of three replications of each of the two main plot treatments, Flat bed and Raised bed, and five sub plot treatments, 100% IO, 100% FYM, 50% IO + 50% FYM, 75% IO + 25% FYM, and 100% IO + 25% FYM. The observations were made at 25, 50, and 75 days following sowing. According to the results, treatment T3 (50% IO + 50% FYM) produced the highest levels of cobs per plant, cob diameter, cob number of grains per cob, cob weight per plant, cob length, test weight, index of harvest, yield of grain, and straw yield. Therefore, combining organic and inorganic inputs in T3 (50% IO + 50% FYM) with raised beds led to high maize yield performance. For sustainable maize development, the mixture of Raised bed with 50% IO + 50% FYM might be advised
Variations in Physiological, Psychomotor, and Analgesic Parameters during Titration of Nitrous Oxide in 3–12 Years Old Children Managed with Inhalation Sedation
Temporal morphometric analyses of Pila globosa in India for its use in aquaculture and food industry
Abstract
Background
Although the apple snail Pila globosa is used as indicator species for human consumption locally and as fish feed, research on it in general is very scanty. It is used in food industry, in aquaculture as fish bait and used as food in many regions of India and many other countries, but research on it has been started in the 1970s. Only 40 articles are available on this organism in PubMed indicating an urgent need of basic research on it especially work on its spatiotemporal morphometry Therefore, sampling of P. globosa was done from different parts of India in different seasons (summer, winter and rainy), and different morphometric studies were performed on this organism to draw baseline information. Analysis was conducted to study morphometry, the relationship between shell length and the weight and relative condition factor of Indian apple snail Pila globosa collected from five zones (east, west, north, south and centre) of India during 2018–2019 year.
Results
The shell length (SL) (46.5 ± 13.33), shell width (SW) (40.22±11.5 mm), spire length (SPL) (2.99±0.15 mm), base length (BL) (12.53±2.94 mm), aperture length (AL) (21.95±4.36 mm), aperture width (AW) (2.74±0.47 mm) and shell weight (WT) (31.08±13.76 g) were observed to be varied among the individual sampled across India. Different relationships for SL/SW (Log SW=0.9889 Log SL + 0.9444), SL/SPL (Log SPL = 0.1452 Log SL+0.3815), SL/BL (Log BL=0.7789 Log SL+0.5814), SL/AL (Log AL= 0.6518 Log SL+0.9111) and SL/AW (Log AW=0.4475 Log SL+0.1422) were observed by considering shell length as basic index. The relationship between shell length and shell weight was found to be Log WT=2.0263 Log SL+0.1098. The relative condition factor revealed uninterrupted and good environmental condition observed for apple snails. A negative allometric growth pattern was observed from the length–weight relationship.
Conclusion
The environments of apple snail in India are not contaminated, and the results can be used as baseline data in aquaculture for model analysis and can be used as a reference for drawing relationship among different morphometric indices of P. globosa in India, as there is no such information available on it. The data can also be used for mass scale production of P. globosa for consumption by human and use in aquatic industries as fish feed.
</jats:sec
