2,672 research outputs found

    Vector particles tunneling from BTZ black holes

    Full text link
    In this paper we investigate vector particles' Hawking radiation from a BTZ black hole. By applying the WKB approximation and the Hamilton-Jacobi Ansatz to the Proca equation, we obtain the tunneling spectrum of vector particles. The expected Hawking temperature is recovered

    Itinerant ferromagnetism in a Fermi gas with contact interaction: Magnetic properties in a dilute Hubbard model

    Full text link
    Ground state properties of the repulsive Hubbard model on a cubic lattice are investigated by means of the auxiliary-field quantum Monte Carlo method. We focus on low-density systems with varying on-site interaction U/tU/t, as a model relevant to recent experiments on itinerant ferromagnetism in a dilute Fermi gas with contact interaction. Twist-average boundary conditions are used to eliminate open-shell effects and large lattice sizes are studied to reduce finite-size effects. The sign problem is controlled by a generalized constrained path approximation. We find no ferromagnetic phase transition in this model. The ground-state correlations are consistent with those of a paramagnetic Fermi liquid.Comment: 4+ pages, 4 figure

    Source Imaging of a Moving Type-IV Solar Radio Burst and its Role in Tracking Coronal Mass Ejection From the Inner to the Outer Corona

    Full text link
    Source imaging of solar radio bursts can be used to track energetic electrons and associated magnetic structures. Here we present a combined analysis of data at different wavelengths for an eruption associated with a moving type-IV (t-IVm) radio burst. In the inner corona, the sources are correlated with a hot and twisted eruptive EUV structure, while in the outer corona the sources are associated with the top front of the bright core of a white light coronal mass ejection (CME). This reveals the potential of using t-IVm imaging data to continuously track the CME by lighting up the specific component containing radio-emitting electrons. It is found that the t-IVm burst presents a clear spatial dispersion with observing frequencies. The burst manifests broken power-law like spectra in brightness temperature, which is as high as 10710^7-10910^9 K while the polarization level is in-general weak. In addition, the t-IVm burst starts during the declining phase of the flare with a duration as long as 2.5 hours. From the differential emission measure analysis of AIA data, the density of the T-IVm source is likely at the level of 108^8 cm3^{-3} at the start of the burst, and the temperature may reach up to several MK. These observations do not favor gyro-synchrotron to be the radiation mechanism, yet in line with a coherent plasma emission excited by energetic electrons trapped within the source. Further studies are demanded to elucidate the emission mechanism and explore the full diagnostic potential of t-IVm bursts.Comment: 22 pages, 8 figures, Accepted for publication in AP

    Current induced magnetization switching in PtCoCr structures with enhanced perpendicular magnetic anisotropy and spin-orbit torques

    Full text link
    Magnetic trilayers having large perpendicular magnetic anisotropy (PMA) and high spin-orbit torques (SOTs) efficiency are the key to fabricate nonvolatile magnetic memory and logic devices. In this work, PMA and SOTs are systematically studied in Pt/Co/Cr stacks as a function of Cr thickness. An enhanced perpendicular anisotropy field around 10189 Oe is obtained and is related to the interface between Co and Cr layers. In addition, an effective spin Hall angle up to 0.19 is observed due to the improved antidamping-like torque by employing dissimilar metals Pt and Cr with opposite signs of spin Hall angles on opposite sides of Co layer. Finally, we observed a nearly linear dependence between spin Hall angle and longitudinal resistivity from their temperature dependent properties, suggesting that the spin Hall effect may arise from extrinsic skew scattering mechanism. Our results indicate that 3d transition metal Cr with a large negative spin Hall angle could be used to engineer the interfaces of trilayers to enhance PMA and SOTs.Comment: 14 pages, 6 figure
    corecore