1,000 research outputs found
Two-dimensional dipolar Bose gas with the roton-maxon excitation spectrum
We discuss fluctuations in a dilute two-dimensional Bose-condensed dipolar
gas, which has a roton-maxon character of the excitation spectrum. We calculate
the density-density correlation function, fluctuation corrections to the
chemical potential, compressibility, and the normal (superfluid) fraction. It
is shown that the presence of the roton strongly enhances fluctuations of the
density, and we establish the validity criterion of the Bogoliubov approach. At
T=0 the condensate depletion becomes significant if the roton minimum is
sufficiently close to zero. At finite temperatures exceeding the roton energy,
the effect of thermal fluctuations is stronger and it may lead to a large
normal fraction of the gas and compressibility.Comment: 5 pages, 3 figure
Scattering properties of weakly bound dimers of fermionic atoms
We consider weakly bound diatomic molecules (dimers) formed in a
two-component atomic Fermi gas with a large positive scattering length for the
interspecies interaction. We develop a theoretical approach for calculating
atom-dimer and dimer-dimer elastic scattering and for analyzing the inelastic
collisional relaxation of the molecules into deep bound states. This approach
is based on the single-channel zero range approximation, and we find that it is
applicable in the vicinity of a wide two-body Feshbach resonance. Our results
draw prospects for various interesting manipulations of weakly bound dimers of
fermionic atoms.Comment: extended version of cond-mat/030901
Superfluidity of identical fermions in an optical lattice: atoms and polar molecules
In this work, we discuss the emergence of -wave superfluids of identical
fermions in 2D lattices. The optical lattice potential manifests itself in an
interplay between an increase in the density of states on the Fermi surface and
the modification of the fermion-fermion interaction (scattering) amplitude. The
density of states is enhanced due to an increase of the effective mass of
atoms. In deep lattices, for short-range interacting atoms, the scattering
amplitude is strongly reduced compared to free space due to a small overlap of
wavefunctions of fermions sitting in the neighboring lattice sites, which
suppresses the -wave superfluidity. However, we show that for a moderate
lattice depth there is still a possibility to create atomic -wave
superfluids with sizable transition temperatures. The situation is drastically
different for fermionic polar molecules. Being dressed with a microwave field,
they acquire a dipole-dipole attractive tail in the interaction potential.
Then, due to a long-range character of the dipole-dipole interaction, the
effect of the suppression of the scattering amplitude in 2D lattices is absent.
This leads to the emergence of a stable topological superfluid of
identical microwave-dressed polar molecules.Comment: 14 pages, 4 figures; prepared for proceedings of the IV International
Conference on Quantum Technologies (Moscow, July 12-16, 2017); the present
paper summarizes the results of our studies arXiv:1601.03026 and
arXiv:1701.0852
Zero sound in a two-dimensional dipolar Fermi gas
We study zero sound in a weakly interacting 2D gas of single-component
fermionic dipoles (polar molecules or atoms with a large magnetic moment)
tilted with respect to the plane of their translational motion. It is shown
that the propagation of zero sound is provided by both mean field and many-body
(beyond mean field) effects, and the anisotropy of the sound velocity is the
same as the one of the Fermi velocity. The damping of zero sound modes can be
much slower than that of quasiparticle excitations of the same energy. One thus
has wide possibilities for the observation of zero sound modes in experiments
with 2D fermionic dipoles, although the zero sound peak in the structure
function is very close to the particle-hole continuum.Comment: 15 pages, 2 figure
Achieving a BCS transition in an atomic Fermi gas
We consider a gas of cold fermionic atoms having two spin components with
interactions characterized by their s-wave scattering length . At positive
scattering length the atoms form weakly bound bosonic molecules which can be
evaporatively cooled to undergo Bose-Einstein condensation, whereas at negative
scattering length BCS pairing can take place. It is shown that, by
adiabatically tuning the scattering length from positive to negative
values, one may transform the molecular Bose-Einstein condensate into a highly
degenerate atomic Fermi gas, with the ratio of temperature to Fermi temperature
. The corresponding critical final value of
which leads to the BCS transition is found to be about one half, where is
the Fermi momentum.Comment: 4 pages, 1 figure. Phys. Rev. Lett. in pres
Stable dilute supersolid of two-dimensional dipolar bosons
We consider two-dimensional bosonic dipoles oriented perpendicularly to the
plane. On top of the usual two-body contact and long-range dipolar interactions
we add a contact three-body repulsion as expected, in particular, for dipoles
in the bilayer geometry with tunneling. The three-body repulsion is crucial for
stabilizing the system, and we show that our model allows for stable continuous
space supersolid states in the dilute regime and calculate the zero-temperature
phase diagram.Comment: revised version, 5 pages, 2 figures, with 3 pages supplementary
materia
Dynamics of dark solitons in elongated Bose-Einstein condensates
We find two types of moving dark soliton textures in elongated Bose-Einstein
condensates: non-stationary kinks and proper dark solitons. The former have a
curved notch region and rapidly decay by emitting phonons and/or proper dark
solitons. The proper moving solitons are characterized by a flat notch region
and we obtain the diagram of their dynamical stability. At finite temperatures
the dynamically stable solitons decay due to the thermodynamic instability. We
develop a theory of their dissipative dynamics and explain experimental data.Comment: ~ 5 pages, 1 figur
- …
