300 research outputs found

    From D3-Branes to Lifshitz Space-Times

    Full text link
    We present a simple embedding of a z=2 Lifshitz space-time into type IIB supergravity. This is obtained by considering a stack of D3-branes in type IIB supergravity and deforming the world-volume by a plane wave. The plane wave is sourced by the type IIB axion. The superposition of the plane wave and the D3-branes is 1/4 BPS. The near horizon geometry of this configuration is a 5-dimensional z=0 Schroedinger space-time times a 5-sphere. This geometry is also 1/4 BPS. Upon compactification along the direction in which the wave is traveling the 5-dimensional z=0 Schroedinger space-time reduces to a 4-dimensional z=2 Lifshitz space-time. The compactification is such that the circle is small for weakly coupled type IIB string theory. This reduction breaks the supersymmetries. Further, we propose a general method to construct analytic z=2 Lifshitz black brane solutions. The method is based on deforming 5-dimensional AdS black strings by an axion wave and reducing to 4-dimensions. We illustrate this method with an example.Comment: version 3: version published in Classical and Quantum Gravit

    Exact solutions for supersymmetric stationary black hole composites

    Get PDF
    Four dimensional N=2 supergravity has regular, stationary, asymptotically flat BPS solutions with intrinsic angular momentum, describing bound states of separate extremal black holes with mutually nonlocal charges. Though the existence and some properties of these solutions were established some time ago, fully explicit analytic solutions were lacking thus far. In this note, we fill this gap. We show in general that explicit solutions can be constructed whenever an explicit formula is known in the theory at hand for the Bekenstein-Hawking entropy of a single black hole as a function of its charges, and illustrate this with some simple examples. We also give an example of moduli-dependent black hole entropy.Comment: 13 pages, 1 figur

    Jerk, snap, and the cosmological equation of state

    Full text link
    Taylor expanding the cosmological equation of state around the current epoch is the simplest model one can consider that does not make any a priori restrictions on the nature of the cosmological fluid. Most popular cosmological models attempt to be ``predictive'', in the sense that once somea priori equation of state is chosen the Friedmann equations are used to determine the evolution of the FRW scale factor a(t). In contrast, a retrodictive approach might usefully take observational dataconcerning the scale factor, and use the Friedmann equations to infer an observed cosmological equation of state. In particular, the value and derivatives of the scale factor determined at the current epoch place constraints on the value and derivatives of the cosmological equation of state at the current epoch. Determining the first three Taylor coefficients of the equation of state at the current epoch requires a measurement of the deceleration, jerk, and snap -- the second, third, and fourth derivatives of the scale factor with respect to time. Higher-order Taylor coefficients in the equation of state are related to higher-order time derivatives of the scale factor. Since the jerk and snap are rather difficult to measure, being related to the third and fourth terms in the Taylor series expansion of the Hubble law, it becomes clear why direct observational constraints on the cosmological equation of state are so relatively weak; and are likely to remain weak for the foreseeable future.Comment: V1: 10 pages; uses iopart.cls setstack.sty V2: six additional references, some clarifying comments and discussion, no physics changes. V3: significant additions based on community feedback; explicit calculations now carried out to fourth order in redshift. V4: Discussion of current observational situation added. This version accepted for publication in Classical and Quantum Gravity. Now 15 page

    Spurious Shear in Weak Lensing with LSST

    Full text link
    The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image \sim 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r27.5r\sim27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, \textit{additive} systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than 10\sim10' in the single short exposures, which propagates into a spurious shear correlation function at the 10410^{-4}--10310^{-3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.Comment: 22 pages, 12 figures, accepted by MNRA

    STU Black Holes and String Triality

    Get PDF
    We find double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space with the prepotential F=STU. The area formula is STU-moduli independent and has [SL(2,Z)]3{[SL(2,Z)]}^3 symmetry in space of charges. The dual version of this theory without prepotential treats the dilaton S asymmetric versus T,U-moduli. We display the dual relation between new (STU) black holes and stringy (S|TU) black holes using particular Sp(8, Z) transformation. The area formula of one theory equals that of the dual theory when expressed in terms of dual charges. We analyse the relation between (STU) black holes to string triality of black holes: (S|TU), (T|US), (U|ST) solutions. In the democratic STU-symmetric version we find that all three S and T and U duality symmetries are non-perturbative and mix electric and magnetic charges.Comment: 12 pages, 2 Postscript figures, ref.added, minor corrections, version to appear in Phys. Rev.

    Measuring the Polarization of a Rapidly Precessing Deuteron Beam

    Get PDF
    This paper describes a time-marking system that enables a measurement of the in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in the Cooler Synchrotron (COSY) at the Forschungszentrum J\"ulich. The clock time of each polarimeter event is used to unfold the 120-kHz spin precession and assign events to bins according to the direction of the horizontal polarization. After accumulation for one or more seconds, the down-up scattering asymmetry can be calculated for each direction and matched to a sinusoidal function whose magnitude is proportional to the horizontal polarization. This requires prior knowledge of the spin tune or polarization precession rate. An initial estimate is refined by re-sorting the events as the spin tune is adjusted across a narrow range and searching for the maximum polarization magnitude. The result is biased toward polarization values that are too large, in part because of statistical fluctuations but also because sinusoidal fits to even random data will produce sizeable magnitudes when the phase is left free to vary. An analysis procedure is described that matches the time dependence of the horizontal polarization to templates based on emittance-driven polarization loss while correcting for the positive bias. This information will be used to study ways to extend the horizontal polarization lifetime by correcting spin tune spread using ring sextupole fields and thereby to support the feasibility of searching for an intrinsic electric dipole moment using polarized beams in a storage ring. This paper is a combined effort of the Storage Ring EDM Collaboration and the JEDI Collaboration.Comment: 28 pages, 15 figures, prepared for Physical Review ST - Accelerators and Beam
    corecore