1,434 research outputs found

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres

    Get PDF
    A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped GdAlGaO (GAGG:Ce) and YAlO (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution was studied as a function of the incidence angle of the beam and found to be of the order of 10%/E⊕1%, in line with the LHCb Shashlik technology. The time resolution was measured with metal channel dynode photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 ± 0.2) ps at 5 GeV.We acknowledge support by the CERN Strategic Programme on Technologies for Future Experiments, https://ep-rnd.web.cern.ch/, by the MCIN/AEI, GenCat and GVA (Spain), and by the NSFC (China) under grant Nos. 12175005, 12061141007. The measurements were performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF). The authors would like to thank T. Schneider, H. Gerwig, N. Siegrist, and D. Deyrail (CERN) for their help in designing and assembling the prototype and the set-up, A. Barnyakov, Budker Institute of Nuclear Physics (BINP), Novosibirsk, for kindly providing the MCPs, and the ITEP ATLAS group for the DWCs

    Observation of strangeness enhancement with charmed mesons in high-multiplicity pPbp\mathrm{Pb} collisions at sNN=8.16\sqrt {s_{\mathrm{NN}}}=8.16\,TeV

    Full text link
    The production of prompt Ds+D^+_{s} and D+D^+ mesons is measured by the LHCb experiment in proton-lead (pPbp\mathrm{Pb}) collisions in both the forward (1.5<y<4.01.5<y^*<4.0) and backward (5.0<y<2.5-5.0<y^*<-2.5) rapidity regions at a nucleon-nucleon center-of-mass energy of sNN=8.16\sqrt {s_{\mathrm{NN}}}=8.16\,TeV. The nuclear modification factors of both Ds+D^+_{s} and D+D^+ mesons are determined as a function of transverse momentum, pTp_{\mathrm{T}}, and rapidity. In addition, the Ds+D^+_{s} to D+D^+ cross-section ratio is measured as a function of the charged particle multiplicity in the event. An enhanced Ds+D^+_{s} to D+D^+ production in high-multiplicity events is observed for the whole measured pTp_{\mathrm{T}} range, in particular at low pTp_{\mathrm{T}} and backward rapidity, where the significance exceeds six standard deviations. This constitutes the first observation of strangeness enhancement in charm quark hadronization in high-multiplicity pPbp\mathrm{Pb} collisions. The results are also qualitatively consistent with the presence of quark coalescence as an additional charm quark hadronization mechanism in high-multiplicity proton-lead collisions.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-021.html (LHCb public pages

    SND@LHC: The Scattering and Neutrino Detector at the LHC

    Get PDF
    SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of 7.2<η<8.4{7.2 < \eta < 8.4}. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250 fb1\text{fb}^{-1}

    Search for the lepton-flavor violating decay Bs0 →φμ±τ

    Get PDF
    A search for the lepton-flavor violating decays Bs0→φμ±τ is presented, using a sample of proton-proton collisions at center-of-mass energies of 7, 8, and 13 TeV, collected with the LHCb detector and corresponding to a total integrated luminosity of 9 fb-1. The τ leptons are selected using decays with three charged pions. No significant excess is observed, and an upper limit on the branching fraction is determined to be B(Bs0→φμ±τ)&lt;1.0×10-5 at 90% confidence level

    Measurement of D0D0D^0-\overline{D}^0 mixing and search for CPCP violation with D0K+πD^0\rightarrow K^+\pi^- decays

    Full text link
    A measurement of the time-dependent ratio of the D0K+πD^0\rightarrow K^+\pi^- to D0K+π\overline{D}^0\rightarrow K^+\pi^- decay rates is reported. The analysis uses a sample of proton-proton collisions corresponding to an integrated luminosity of 6 fb1^-1 recorded by the LHCb experiment from 2015 through 2018 at a center-of-mass energy of 13 TeV. The D0D^0 meson is required to originate from a D+D0π+D^{*+}\rightarrow D^0\pi^+ decay, such that its flavor at production is inferred from the charge of the accompanying pion. The measurement is performed simultaneously for the K+πK^+\pi^- and Kπ+K^-\pi^+ final states, allowing both mixing and CPCP-violation parameters to be determined. The value of the ratio of the decay rates at production is determined to be RKπ=(343.1±2.0)×105R_{K\pi} = (343.1 \pm 2.0) \times 10^{-5}. The mixing parameters are measured to be cKπ=(51.4±3.5)×104c_{K\pi} = (51.4 \pm 3.5) \times 10^{-4} and cKπ=(13±4)×106c_{K\pi}^{\prime} = (13 \pm 4) \times 10^{-6}, where RKπcKπ\sqrt{R_{K\pi}}c_{K\pi} is the linear coefficient of the expansion of the ratio as a function of decay time in units of the D0D^0 lifetime, and cKπc_{K\pi}^{\prime} is the quadratic coefficient, both averaged between the K+πK^+\pi^- and Kπ+K^-\pi^+ final states. The precision is improved relative to the previous best measurement by approximately 60%. No evidence for CPCP violation is found.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2024-008.htm

    Measurement of prompt D+D^+ and Ds+D^+_{s} production in pPbp\mathrm{Pb} collisions at sNN=5.02\sqrt {s_{\mathrm{NN}}}=5.02\,TeV

    Get PDF
    The production of prompt D+D^+ and Ds+D^+_{s} mesons is studied in proton-lead collisions at a centre-of-mass energy of sNN=5.02\sqrt {s_{\mathrm{NN}}}=5.02\,TeV. The data sample corresponding to an integrated luminosity of (1.58±0.02)nb1(1.58\pm0.02)\mathrm{nb}^{-1} is collected by the LHCb experiment at the LHC. The differential production cross-sections are measured using D+D^+ and Ds+D^+_{s} candidates with transverse momentum in the range of 0<pT<14GeV/c0<p_{\mathrm{T}} <14\,\mathrm{GeV}/c and rapidities in the ranges of 1.5<y<4.01.5<y^*<4.0 and 5.0<y<2.5-5.0<y^*<-2.5 in the nucleon-nucleon centre-of-mass system. For both particles, the nuclear modification factor and the forward-backward production ratio are determined. These results are compared with theoretical models that include initial-state nuclear effects. In addition, measurements of the cross-section ratios between D+D^+, Ds+D^+_{s} and D0D^0 mesons are presented, providing a baseline for studying the charm hadronization in lead-lead collisions at LHC energies.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-006.html (LHCb public pages

    Measurements of the branching fraction ratio B(ϕμ+μ)/B(ϕe+e)\cal{B}(\phi \to \mu^+\mu^-)/\cal{B}(\phi \to e^+e^-) with charm meson decays

    Full text link
    Measurements of the branching fraction ratio B(ϕμ+μ)/B(ϕe+e){\cal{B}(\phi \to \mu^+ \mu^-)/\cal{B}(\phi\to e^+e^-)} with Ds+π+ϕ{D_{s}^{+} \to \pi^{+} \phi} and D+π+ϕ{D^{+} \to \pi^{+} \phi} decays, denoted RϕπsR^{s}_{\phi \pi} and RϕπdR^{d}_{\phi \pi}, are presented. The analysis is performed using a dataset corresponding to an integrated luminosity of 5.4fb1\,\rm{fb}^{-1} of pppp collision data collected with the LHCb experiment. The branching fractions are normalised with respect to the B+K+J/ψ(e+e){B^{+} \to K^{+} J/\psi(\to e^+e^-)} and B+K+J/ψ(μ+μ){B^{+} \to K^{+} J/\psi(\to \mu^+\mu^-)} decay modes. The combination of the results yields Rϕπ=1.022±0.012(stat)±0.048(syst). R_{\phi \pi} = 1.022 \pm 0.012 \,({\rm stat}) \, \pm 0.048 \,({\rm syst}). The result is compatible with previous measurements of the ϕ+\phi \to \ell^{+}\ell^{-} branching fractions and predictions based on the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-038.html (LHCb public pages

    Search for CP\textit{CP} violation in the phase space of D0KS0K±πD^{0} \rightarrow K_{S}^{0} K^{\pm} \pi^{\mp} decays with the energy test

    Get PDF
    A search for CP\textit{CP} violation in D0KS0K+πD^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} and D0KS0Kπ+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} decays is reported. The search is performed using an unbinned model-independent method known as the energy test that probes local CP\textit{CP} violation in the phase space of the decays. The data analysed correspond to an integrated luminosity of 5.4 5.4~fb1^{-1} collected in proton-proton collisions by the LHCb experiment at a centre-of-mass energy of s=13\sqrt{s}=13~TeV, amounting to approximately 950000 and 620000 signal candidates for the D0KS0Kπ+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} and D0KS0K+πD^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} modes, respectively. The method is validated using D0Kπ+ππ+D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+} and D0KS0π+πD^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} decays, where CP\textit{CP}-violating effects are expected to be negligible, and using background-enhanced regions of the signal decays. The results are consistent with CP\textit{CP} symmetry in both the D0KS0Kπ+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} and the D0KS0K+πD^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} decays, with pp-values for the hypothesis of no CP\textit{CP} violation of 70% and 66%, respectively.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-019.html (LHCb public pages

    Searches for rare Bs0 and B 0 decays into four muons

    Get PDF
    Searches for rare Bs0 and B0 decays into four muons are performed using proton-proton collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. Direct decays and decays via light scalar and J/ψ resonances are considered. No evidence for the six decays searched for is found and upper limits at the 95% confidence level on their branching fractions ranging between 1.8 × 10−10 and 2.6 × 10−9 are set. [Figure not available: see fulltext.
    corecore