7,240 research outputs found
Impact cratering and the surface age of Venus: The Pre-Magellan controversy
The average surface age of a planet is a major indicator of the level of its geologic activity and thus of the dynamics of its interior. Radar images obtained by Venera 15/16 from the northern quarter of the Venus (lat 30 to 90 degs) reveal about 150 features that resemble impact craters, and they were so interpreted by Soviet investigators B. A. Ivanov, A. T. Basilevsky, and their colleagues. These features range in diameter from about 10 to 145 km. Their areal density is remarkably similar to the density of impact structures found on the American and European continental shields. The basic difference between the Soviet and American estimates of the average surface age of Venus's northern quarter is due to which crater-production rate is used for the Venusian environment. Cratering rates based on the lunar and terrestrial cratering records, as well as statistical calculations based on observed and predicted Venus-crossing asteroids and comets, have been used in both the Soviet and American calculations. The single largest uncertainty in estimating the actual cratering rates near Venus involves the shielding effect of the atmosphere
Problems in the Classification of Prognosis for Purposes of Disengagement of Therapy in the Critically Ill Patient
Gravity survey of the Mt. Toondina impact structure, South Australia
The Mt. Toondina impact structure is located in northern South Australia, about 45 km south of the town of Oodnadatta. Only the central uplift is exposed. The outcrops at Mt. Toondina reveal a remarkable structural anomaly surrounded by a broad expanse of nearly flat-lying beds of the Bulldog Shale of Early Cretaceous age. A gravity survey was undertaken in 1989 to determine the diameter of the impact structure, define the form of the central uplift, and understand the local crustal structure. Data were collected along two orthogonal lines across the structure. In addition to the profiles, a significant number of measurements were made on and around the central uplift. The 1989 gravity data combined with 1963 gravity data and the seismic reflection data provide an excellent data base to interpret the subsurface structure of the Mt. Toondina feature
Chemical fractionation of siderophile elements in impactites from Australian meteorite craters
The abundance pattern of siderophile elements in terrestrial and lunar impact melt rocks was used extensively to infer the nature of the impacting projectiles. An implicit assumption made is that the siderophile abundance ratios of the projectiles are approximately preserved during mixing of the projectile constituents with the impact melts. As this mixture occurs during flow of strongly shocked materials at high temperatures, however there are grounds for suspecting that the underlying assumption is not always valid. In particular, fractionation of the melted and partly vaporized material of the projectile might be expected because of differences in volatility, solubility in silicate melts, and other characteristics of the constituent elements. Impactites from craters with associated meteorites offer special opportunities to test the assumptions on which projectile identifications are based and to study chemical fractionation that occurred during the impact process
Asteroid flux and impact cratering rate on Venus
By the end of 1990, 65 Venus-crossing asteroids were recognized; these represent 59 percent of the known Earth-crossing asteroids. Further studies, chiefly numerical integrations of orbit evolution, may reveal one or two more Venus crossers among the set of discovered asteroids. A Venus crosser was defined as an asteroid whose orbit can intersect the orbit of Venus as a result of secular (long range) perturbations. Venus crossers revolving on orbits that currently overlap the orbit of Venus are called Venapol asteroids, and those on orbit that don't overlap are called Venamor asteroids; 42 Venapols and 23 Venamors were recognized. Collision probabilities with Venus for 60 of the known Venus crossers were determined
Spin-induced symmetry breaking in orbitally ordered NiCr_2O_4 and CuCr_2O_4
At room temperature, the normal oxide spinels NiCr_2O_4 and CuCr_2O_4 are
tetragonally distorted and crystallize in the I4_1/amd space group due to
cooperative Jahn-Teller ordering driven by the orbital degeneracy of
tetrahedral Ni () and Cu (). Upon cooling, these
compounds undergo magnetic ordering transitions; interactions being somewhat
frustrated for NiCr_2O_4 but not for CuCr_2O_4. We employ variable-temperature
high-resolution synchrotron X-ray powder diffraction to establish that at the
magnetic ordering temperatures there are further structural changes, which
result in both compounds distorting to an orthorhombic structure consistent
with the Fddd space group. NiCr_2O_4 exhibits additional distortion, likely
within the same space group, at a yet-lower transition temperature of = 30
K. The tetragonal to orthorhombic structural transition in these compounds
appears to primarily involve changes in NiO_4 and CuO_4 tetrahedra
Effects of electrical charging on the mechanical Q of a fused silica disk
We report on the effects of an electrical charge on mechanical loss of a
fused silica disk. A degradation of Q was seen that correlated with charge on
the surface of the sample. We examine a number of models for charge damping,
including eddy current damping and loss due to polarization. We conclude that
rubbing friction between the sample and a piece of dust attracted by the
charged sample is the most likely explanation for the observed loss.Comment: submitted to Review of Scientific Instrument
Real space investigation of structural changes at the metal-insulator transition in VO2
Synchrotron X-ray total scattering studies of structural changes in rutile
VO2 at the metal-insulator transition temperature of 340 K reveal that
monoclinic and tetragonal phases of VO2 coexist in equilibrium, as expected for
a first-order phase transition. No evidence for any distinct intermediate phase
is seen. Unbiased local structure studies of the changes in V--V distances
through the phase transition, using reverse Monte Carlo methods, support the
idea of phase coexistence and point to the high degree of correlation in the
dimerized low-temperature structure. No evidence for short range V--V
correlations that would be suggestive of local dimers is found in the metallic
phase.Comment: 4 pages, 5 figure
- …
